Home Photocatalytic paraquat degradation over TiO2 modified by hydrothermal technique in alkaline solution
Article
Licensed
Unlicensed Requires Authentication

Photocatalytic paraquat degradation over TiO2 modified by hydrothermal technique in alkaline solution

  • Pallavi Nagaraju , Rattabal Khunphonoi , Shivaraju Harikaranahalli Puttaiah , Totsaporn Suwannaruang , Chatkamol Kaewbuddee and Kitirote Wantala EMAIL logo
Published/Copyright: June 3, 2017
Become an author with De Gruyter Brill

Abstract

In the present research, titanium nanotubes were synthesized via the soft hydrothermal method. A study on the effect of the synthesizing parameters such as aging temperature and time of the hydrothermal process on the photocatalytic paraquat degradation was explored. Central Composite Design (CCD) was used to determine the influence of the preparation parameter on the optimal condition, main and interaction effects on crystalline size, percent paraquat removal by adsorption and photocatalytic degradation as responses. The XRD pattern of the synthesized nanomaterial reported the anatase phase of titania nanotubes. SEM image of the prepared nanomaterial clearly indicated the agglomerated with tubular structure. Band gap energy of the nanotubes was found lower than that of the pure anatase TiO2. Paraquat removal by adsorption is more effective than by photocatalytic degradation. The error of the model remains insignificant for all the three responses.

Acknowledgment

This research was partially supported by JSS University Mysore. This research work was carried out in the Chemical Kinetics and Applied Catalysis Laboratory (CKCL), Faculty of Engineering, Khon Kaen University (KKU), Thailand. We thank our colleagues from KKU Thailand who provided insight and expertise that greatly assisted the research.

References

[1] Gawarammana IB, Buckley NA. Br Clin J Pharmacol. 2011;72:745–757.10.1111/j.1365-2125.2011.04026.xSearch in Google Scholar

[2] Tanturatna P, Wirojanagud W, Neramittagapong S, Wantala K, Grisdanurak N. Indian J Chem Techn. 2011;18:363–371.Search in Google Scholar

[3] Garcia-Segura S, Dosta S, Guilemany JM, Brillas E. Appl Catal B Environ. 2013;132–133:142–150.10.1016/j.apcatb.2012.11.037Search in Google Scholar

[4] Oliveira C, Gruskevica K, Juhna T, Tihomirova K, Alves A, Madeira LM. Drink Water Eng Sci. 2014;7:11–21.10.5194/dwes-7-11-2014Search in Google Scholar

[5] Khunphonoi R, Grisdanurak N. Chem Eng J. 2016;296:420–427.10.1016/j.cej.2016.03.117Search in Google Scholar

[6] Shivaraju HP, Byrappa K, Vijay Kumar TMS, Ranganathaiah C. Bull Catal Soc India. 2010;9:37–50.Search in Google Scholar

[7] Hashimoto K, Irie H, Fujishima A. J Appl Phys. 2005;44:8269–8285.10.1143/JJAP.44.8269Search in Google Scholar

[8] Byrappa K, Subramani AK, Ananda S, Lokanatha Rai KM, Ranganathaiah C, Yoshimura M. B Mater Sci. 2007;30:37–41.10.1007/s12034-007-0007-8Search in Google Scholar

[9] Pan H, Wang XD, Xiao SS, Yu LG, Zhang ZJ. Indian J Eng Mater Sci. 2013;20:561–567.Search in Google Scholar

[10] Kong H, Song J, Jang J. Environ Sci Technol. 2010;44:5672–5676.10.1021/es1010779Search in Google Scholar

[11] Pavasupree S, Jitputti J, Ngamsinlapasathian S, Yoshikawa S. Mater Res Bull. 2008;43:149–157.10.1016/j.materresbull.2007.02.028Search in Google Scholar

[12] Muggli DS, Ding L. Appl Catal B–Environ. 2001;32:181–194.10.1016/S0926-3373(01)00137-0Search in Google Scholar

[13] Suwannnaruang T, Rivera KKP, Neramittagapong A, Wantala K. Surf Coat Tech. 2015;271:192–200.10.1016/j.surfcoat.2014.12.041Search in Google Scholar

[14] Malekshahi Byranvanda M, NematiKharat A, Fatholahi L, Malekshahi Beiranvand Z. J Nanostruct. 2013;3:1–9.Search in Google Scholar

[15] Chen X, Mao SS. Chem Rev. 2007;107:2891–2959.10.1021/cr0500535Search in Google Scholar PubMed

[16] Eustis S, El–Sayed MA. Chem Soc Rev. 2006;35:209–217.10.1039/B514191ESearch in Google Scholar

[17] Bazargan MH, Malekshahi Byranvand M, NematiKharat K. Int J Mater Res. 2012;103:347–351.10.3139/146.110644Search in Google Scholar

[18] Wahi RK, Liu Y, Falkner JC, Colvin VL. J Colloid Int Sci. 2006;302:530–536.10.1016/j.jcis.2006.07.003Search in Google Scholar PubMed

[19] Andersson M, Oesterlund L, Ljungstroem S, Palmqvist A. J Phys Chem B. 2002;106:10674–10681.10.1021/jp025715ySearch in Google Scholar

[20] Ryu WH, Park CJ, Kwon HS. J Nanosci Nanotecho. 2008;8:1–4.10.1166/jnn.2008.N03Search in Google Scholar PubMed

[21] Shinde PS, Bhosale CH. J Anal Appl Pyrol. 2008;82:83–88.10.1016/j.jaap.2008.01.004Search in Google Scholar

[22] Tan W, Chen J, Zhou X, Zhang J, Lin Y, Li X, et al. J Solid State Electr. 2009;13:651–656.10.1007/s10008-008-0605-4Search in Google Scholar

[23] Arami H, Mazloumi M, Khalifehzadeh R, Sadrnezhaad SK. Mater Lett. 2007;61:4559–4561.10.1016/j.matlet.2007.02.051Search in Google Scholar

[24] Corradi AB, Bondioli F, Focher B. J Am Ceram Soc. 2005;88:2639–2641.10.1111/j.1551-2916.2005.00474.xSearch in Google Scholar

[25] Yuan ZY, Su BL. Colloid Surface A. 2004;241:173–183.10.1016/j.colsurfa.2004.04.030Search in Google Scholar

[26] Zhou Y, Huang Y, Li D, He W. Mater Res Bull. 2013;48:2420–2425.10.1016/j.materresbull.2013.02.051Search in Google Scholar

[27] Wanga D, Yu B, Zhou F, Wang C, Liua W. Mater Chem Phys. 2009;113:602–606.10.1016/j.matchemphys.2008.08.011Search in Google Scholar

[28] Rivera KKP, De Luna MDG, Suwannaruang T, Wantala K. Desalin Water Treat. 2016;57:22017–22028.10.1080/19443994.2015.1125797Search in Google Scholar

[29] Suwannaruang T, Wantala K. Appl Surf Sci. 2016;380:257–267.10.1016/j.apsusc.2016.01.117Search in Google Scholar

[30] Li W, Fu T, Xie F, Yu SF, He S. Mater Lett. 2007;61:730–735.10.1016/j.matlet.2006.05.053Search in Google Scholar

[31] Wong CL, Tan YN, Mohamed AR. J Environ Manage. 2011;92:1669–1680.10.1016/j.jenvman.2011.03.006Search in Google Scholar PubMed

[32] Ou HH, Lo SL. Sep Purif Tech. 2007;58:179–191.10.1016/j.seppur.2007.07.017Search in Google Scholar

[33] Fen LB, Han TK, Nee NM, Ang BC, Johan MR. Appl Surf Sci. 2011;258:431–435.10.1016/j.apsusc.2011.08.115Search in Google Scholar

[34] Zahedi F, Behpour M, Ghoreishi SM, Khalilian H. Sol Energy. 2015;120:287–295.10.1016/j.solener.2015.07.010Search in Google Scholar

[35] Wantala K, Laokiat L, Khemthong P, Grisdanurak N, Fukaya K. J Taiwan Inst Chem E. 2010;41:612–616.10.1016/j.jtice.2010.01.008Search in Google Scholar

[36] Inagaki M, Kondo N, Nonaka R, Ito E, Toyoda M, Sogabe K, et al. J Hazard Mater. 2009;161:1514–1521.10.1016/j.jhazmat.2008.05.003Search in Google Scholar PubMed

[37] Wang LS, Xiao MW, Huang XJ, Wu YD. J Hazard Mater. 2009;161:49–54.10.1016/j.jhazmat.2008.03.080Search in Google Scholar PubMed

[38] Chen HW, Ku Y, Kuo YL. Water Res. 2007;41:2069–2078.10.1016/j.watres.2007.02.021Search in Google Scholar PubMed

[39] Vetrivel V, Rajendran K, Kalaiselvi V. Int J Chem Tech Res. 2015;7:1090–1097.Search in Google Scholar

[40] Peng T, Zhao D, Dhai K, Shi W, Hirao K. J Phys Chem B. 2005;109:4947–4952.10.1021/jp044771rSearch in Google Scholar PubMed

[41] Lee JC, Kim MS, Kim CK, Chung CH, Cho SM, Han GY, et al. Korean J Chem Eng. 2003;20:862–868.10.1007/BF02697289Search in Google Scholar

[42] Md. Razali H, Ruslimie CA, Khairul WM. J Sustain Sci Manage. 2013;8:244–253.Search in Google Scholar

[43] Ali R, Hassan SH. Malaysian J Anal Sci. 2008;12:77–87.Search in Google Scholar

[44] De Luna MDG, Lin JC-T, Gotostos MJN, Lu M-C. Sustain Environ Res. 2016;26:161–167.10.1016/j.serj.2016.02.001Search in Google Scholar

[45] Dosta S, Robotti M, Garcia-Segura S, Brillas E, Cano IG, Guilemany JM. Appl Catal B Environ. 2016;189:151–159.10.1016/j.apcatb.2016.02.048Search in Google Scholar

Published Online: 2017-6-3

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Editorial
  2. Excitation Kinetics of Oxygen O(1D) State in Low-Pressure Oxygen Plasma and the Effect of Electron Energy Distribution Function
  3. Using amino-functionalized Fe3O4-WO3 nanoparticles for diazinon removal from synthetic and real water samples in presence of UV irradiation
  4. Treatment of high salinity wastewater using CWPO process for reuse
  5. Electrochemical Advanced Oxidation Processes (EAOP) to degrade per- and polyfluoroalkyl substances (PFASs)
  6. Effect of feedstock impurities on activity and selectivity of V-Mo-Nb-Te-Ox catalyst in ethane oxidative dehydrogenation
  7. Photocatalytic Degradation of Azo Dyes Over Semiconductors Supported on Polyethylene Terephthalate and Polystyrene Substrates
  8. Effects of calcination temperature on sol-gel synthesis of porous La2Ti2O7 photocatalyst on degradation of Reactive Brilliant Red X3B
  9. ClO2-oxidation-based demulsification of oil-water transition layer in oilfields: An experimental study
  10. Semi-permanent hair dyes degradation at W/WO3 photoanode under controlled current density assisted by visible light
  11. Degradation of PVA (polyvinyl alcohol) in wastewater by advanced oxidation processes
  12. Degradation of imidacloprid insecticide in a binary mixture with propylene glycol by conventional fenton process
  13. Gemini surfactant-assisted synthesis of BiOBr with superior visible light-induced photocatalytic activity towards RhB degradation
  14. Photocatalytic paraquat degradation over TiO2 modified by hydrothermal technique in alkaline solution
  15. Enhancement of Profenofos Remediation Using Stimulated Bioaugmentation Technique
  16. Mechanistic insight on the sonolytic degradation of phenol at interface and bulk using additives
  17. Biosolubilization of low-grade rock phosphate by mixed thermophilic iron-oxidizing bacteria
  18. Degradation of methyl orange using dielectric barrier discharge water falling film reactor
  19. Rapid prediction of hydrogen peroxide concentration eletrogenerated with boron doped diamond electrodes
Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jaots-2017-0004/html
Scroll to top button