Semi-permanent hair dyes degradation at W/WO3 photoanode under controlled current density assisted by visible light
-
Luciano Evangelista Fraga
, Thais Tasso Guaraldo
Abstract
The indiscriminate use of hair dyes has attracted great deal of attention due to its toxicological and mutagenic aspects demonstrated by some of these substances. Thus, the effluent from beauty salons and domestic sewages if not properly treated can reach water treatment plants and water sources, enhancing human health and environmental protection concern. This work explores the application of photoelectrocatalytic process on Basic Brown 16 and Basic Blue 99 degradation as model of basic hair dyes pollutants. W/WO3 electrode was used as photoanode under optimized conditions of 0.10 mol L–1 Na2SO4 as electrolytic solution, pH 2.0, under 1.25 mA cm–2 of controlled current density application and visible light irradiation. The process leads to complete color removal, and up to 59 % and 44 % mineralization of Basic Brown 16 and Basic Blue 99, respectively. The use of W/WO3 photoanodes under visible irradiation could assist on development of wastewater treatment technology.
Acknowledgements
The authors thank FAPESP (processes 2008/09943-7 and 2008/10449-7), CNPq and CAPES for financial support.
References
[1] Golka K, Kopps S, Myslak ZW. Toxicol. Lett. 2004;151:203–210. 10.1016/j.toxlet.2003.11.016.Search in Google Scholar
[2] Bolt HM, Golka K. Crit. Rev. Toxicol. 2007;37:521–536. 10.1080/10408440701385671.Search in Google Scholar
[3] Hueber-Becker F, Nohynek GJ, Meuling WJ, Benech-Kieffer F, Toutain H. Food Chem. Toxicol. 2004;42:1227–1236. 10.1016/j.fct.2004.02.020.Search in Google Scholar
[4] De Oliveira RA, Zanoni TB, Bessegato GG, Oliveira DP, Umbuzeiro GA, Zanoni MV. Quim. Nova. 2014;37:1037–1046. http://dx.doi.org/10.5935/0100-4042.20140143.10.5935/0100-4042.20140143Search in Google Scholar
[5] Kirkland DJ, Henderson L, Marzin D, Müller L, Parry JM, Speit G, et al. Mutat. Res. – Genet. Toxicol. Environ. Mutagen. 2005;588:88–105. 10.1016/j.mrgentox.2005.09.006.Search in Google Scholar
[6] Chequer FM, Lizier TM, De Felicio R, Zanoni MV, Debonsi NM, Loper NP, et al. . Epub 2011 Aug 30. Toxicol. in Vitro. 2011;25:2054–2063. 10.1016/j.tiv.2011.05.033.Search in Google Scholar
[7] Takayama N, Tanaka S, Kizu R, Hayakawa K. Biomed. Chromatogr. 1999;13:257–261. 10.1002/(SICI)1099-0801(199906)13:4257::AID-BMC830>3.0.CO;2-V.Search in Google Scholar
[8] Masukawa Y. J. Chromatogr. A. 2006;1108:140–144. 10.1016/j.chroma.2006.01.007.Search in Google Scholar
[9] Robbins CR. Chemical Composition of Different Hair Types. Chem. Phys. Behav. Hum. Hair. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012:105–176. . 10.1007/978-3-642-25611-0_2.Search in Google Scholar
[10] Zanoni MV, Sene JJ, Anderson MA. J. Photochem. Photobiol. A Chem. 2003;157:55–63. 10.1016/S1010-6030(02)00320-9.Search in Google Scholar
[11] Carneiro PA, Osugi ME, Sene JJ, Anderson MA, Zanoni MV. Electrochim. Acta. 2004;49:3807–3820. 10.1016/j.electacta.2003.12.057.Search in Google Scholar
[12] Paschoal FM, Anderson MA, Zanoni MV. J. Braz. Chem. Soc. 2008;19:803–810. 10.1590/S0103-50532008000400027.Search in Google Scholar
[13] Fraga LE, Anderson MA, Beatriz ML, Paschoal FM, Romao LP, Zanoni MV. Electrochim. Acta. 2009;54:2069–2076. 10.1016/j.electacta.2008.08.060.Search in Google Scholar
[14] Guaraldo TT, Pulcinelli SH, Zanoni MV. J. Photochem. Photobiol. A Chem.. 2011;217:259–266. 10.1016/j.jphotochem.2010.10.019.Search in Google Scholar
[15] Fraga LE, Zanoni MV. J. Braz. Chem. Soc. 2011;22:718–725. 10.1590/S0103-50532011000400015.Search in Google Scholar
[16] Guaraldo TT, Zanoni TB, De Torresi SI, Gonçales VR, Zocolo GJ, Oliveira DP, et al. Chemosphere. 2013;91:586–593. 10.1016/j.chemosphere.2012.12.027.Search in Google Scholar PubMed
[17] Martínez-De A, La Cruz DS, Martínez EL. Solid State Sci. 2010;12:88–94. 10.1016/j.solidstatesciences.2009.10.010.Search in Google Scholar
[18] Yu J, Qi L. J. Hazard. Mater. 2009;169:221–227. 10.1016/j.jhazmat.2009.03.082.Search in Google Scholar PubMed
[19] Hong X, Wang Z, Cai W, Lu F, Zhang J, Yang Y, et al. Chem. Mater. 2005;17:1548–1552. 10.1021/cm047891k.Search in Google Scholar
[20] Yu JC, Yu J, Ho W, Jiang Z, Zhang L. Chem. Mater. 2002;14:3808–3816. 10.1021/cm020027c.Search in Google Scholar
[21] Somasundaram S, Chenthamarakshan CR, De Tacconi NR, Basit NA, Rajeshwar K. Electrochem. Commun. 2006;8:539–543. 10.1016/j.elecom.2006.01.016.Search in Google Scholar
[22] Sayama K, Hayashi H, Arai T, Yanagida M, Gunji T, Sugihara H. Appl. Catal. B Environ.. 2010;94:150–157. 10.1016/j.apcatb.2009.11.003.Search in Google Scholar
[23] Hong SJ, Jun H, Borse PH, Lee JS. Int. J. Hydrogen Energy. 2009;34:3234–3242. 10.1016/j.ijhydene.2009.02.006.Search in Google Scholar
[24] Marsen B, Miller EL, Paluselli D, Rocheleau RE. Int. J. Hydrogen Energy. 2007;32:1310–1315. 10.1016/j.ijhydene.2006.01.022.Search in Google Scholar
[25] De Tacconi NR, Chenthamarakshan CR, Yogeeswaran G, Watcharenwong A, De Zoysa RS, Basit NA, et al. J. Phys. Chem. B.. 2006;110:25347–25355. 10.1021/jp064527v.Search in Google Scholar
[26] Watcharenwong A, Chanmanee W, De Tacconi NR, Chenthamarakshan CR, Kajitvichyanukul P, Rajeshwar K. J. Electroanal. Chem. 2008;612:112–120. 10.1016/j.jelechem.2007.09.030.Search in Google Scholar
[27] Osugi ME. Avaliação de processos de degradação de corantes dispersos por técnicas eletroquímica e fotoeletroquímica usando eletrodos de Pt, filmes finos e nanotubos de Ti/TiO2 e bicomponentes W/WO3/TiO2. Araraquara, Sao Paulo, Brazil: Sao Paulo State University, 2008Search in Google Scholar
[28] Abe R, Takami H, Murakami N, Ohtani B. J. Am. Chem. Soc. 2008;130:7780–7781. 10.1021/ja800835q.Search in Google Scholar
[29] Solarska R, Santato C, Jorand-Sartoretti C, Ulmann M, Augustynski J. J. Appl. Electrochem. 2005;35:715–721. 10.1007/s10800-005-1400-x.Search in Google Scholar
[30] Bard AJ, Faulkner LR. Electrochemical methods, fundamentals and applications, 4th New York: Wiley, 1970.Search in Google Scholar
[31] Bamwenda GR, Arakawa H. Appl. Catal. A Gen. 2001;210:181–191. 10.1016/S0926-860X(00)00796-1.Search in Google Scholar
[32] Hunge YM, Mahadik MA, Kumbhar SS, Mohite VS, Rajpure KY, Deshpande NG, et al. Ceram. Int. 2016;42:789–798. 10.1016/j.ceramint.2015.08.178.Search in Google Scholar
[33] Guaraldo TT, Zanoni TB, de Torresi SI, et al. Chemosphere. 2013;5:586. 10.1016/j.chemosphere.2012.12.027.Search in Google Scholar PubMed
[34] Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, et al. Curr. Opin. Solid State Mater. Sci. 2007;11:3–18. 10.1016/j.cossms.2007.08.004.Search in Google Scholar
[35] Tio P, Intensity L, Martin ST, Herrmannt H, Hoffmann MR. Time-Resolved Microw. Cond. 1994;90:3323–3330.Search in Google Scholar
[36] Hoffmann MR, Martin ST, Choi W, Bahnemannt DW. Environ Appl Semicond Photocatal. 1995;95:69–96 .10.1021/cr00033a004Search in Google Scholar
[37] Finklea HO. Semiconductor Electrodes. New York: Elsevier, 1988.Search in Google Scholar
[38] Final Report on the Safety Assessment of Basic Blue 99. Int. J. Toxicol. 2007;26:51–63. 10.1080/10915810701351202.Search in Google Scholar PubMed
© 2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Editorial
- Excitation Kinetics of Oxygen O(1D) State in Low-Pressure Oxygen Plasma and the Effect of Electron Energy Distribution Function
- Using amino-functionalized Fe3O4-WO3 nanoparticles for diazinon removal from synthetic and real water samples in presence of UV irradiation
- Treatment of high salinity wastewater using CWPO process for reuse
- Electrochemical Advanced Oxidation Processes (EAOP) to degrade per- and polyfluoroalkyl substances (PFASs)
- Effect of feedstock impurities on activity and selectivity of V-Mo-Nb-Te-Ox catalyst in ethane oxidative dehydrogenation
- Photocatalytic Degradation of Azo Dyes Over Semiconductors Supported on Polyethylene Terephthalate and Polystyrene Substrates
- Effects of calcination temperature on sol-gel synthesis of porous La2Ti2O7 photocatalyst on degradation of Reactive Brilliant Red X3B
- ClO2-oxidation-based demulsification of oil-water transition layer in oilfields: An experimental study
- Semi-permanent hair dyes degradation at W/WO3 photoanode under controlled current density assisted by visible light
- Degradation of PVA (polyvinyl alcohol) in wastewater by advanced oxidation processes
- Degradation of imidacloprid insecticide in a binary mixture with propylene glycol by conventional fenton process
- Gemini surfactant-assisted synthesis of BiOBr with superior visible light-induced photocatalytic activity towards RhB degradation
- Photocatalytic paraquat degradation over TiO2 modified by hydrothermal technique in alkaline solution
- Enhancement of Profenofos Remediation Using Stimulated Bioaugmentation Technique
- Mechanistic insight on the sonolytic degradation of phenol at interface and bulk using additives
- Biosolubilization of low-grade rock phosphate by mixed thermophilic iron-oxidizing bacteria
- Degradation of methyl orange using dielectric barrier discharge water falling film reactor
- Rapid prediction of hydrogen peroxide concentration eletrogenerated with boron doped diamond electrodes
Articles in the same Issue
- Editorial
- Excitation Kinetics of Oxygen O(1D) State in Low-Pressure Oxygen Plasma and the Effect of Electron Energy Distribution Function
- Using amino-functionalized Fe3O4-WO3 nanoparticles for diazinon removal from synthetic and real water samples in presence of UV irradiation
- Treatment of high salinity wastewater using CWPO process for reuse
- Electrochemical Advanced Oxidation Processes (EAOP) to degrade per- and polyfluoroalkyl substances (PFASs)
- Effect of feedstock impurities on activity and selectivity of V-Mo-Nb-Te-Ox catalyst in ethane oxidative dehydrogenation
- Photocatalytic Degradation of Azo Dyes Over Semiconductors Supported on Polyethylene Terephthalate and Polystyrene Substrates
- Effects of calcination temperature on sol-gel synthesis of porous La2Ti2O7 photocatalyst on degradation of Reactive Brilliant Red X3B
- ClO2-oxidation-based demulsification of oil-water transition layer in oilfields: An experimental study
- Semi-permanent hair dyes degradation at W/WO3 photoanode under controlled current density assisted by visible light
- Degradation of PVA (polyvinyl alcohol) in wastewater by advanced oxidation processes
- Degradation of imidacloprid insecticide in a binary mixture with propylene glycol by conventional fenton process
- Gemini surfactant-assisted synthesis of BiOBr with superior visible light-induced photocatalytic activity towards RhB degradation
- Photocatalytic paraquat degradation over TiO2 modified by hydrothermal technique in alkaline solution
- Enhancement of Profenofos Remediation Using Stimulated Bioaugmentation Technique
- Mechanistic insight on the sonolytic degradation of phenol at interface and bulk using additives
- Biosolubilization of low-grade rock phosphate by mixed thermophilic iron-oxidizing bacteria
- Degradation of methyl orange using dielectric barrier discharge water falling film reactor
- Rapid prediction of hydrogen peroxide concentration eletrogenerated with boron doped diamond electrodes