Abstract
Imidacloprid is one of the most widely used insecticides in agriculture. The fate of this highly recalcitrant pollutant and its by-product of incomplete degradation in water is of great concern due to the hazardous effects usually associated to pesticides. In the present manuscript, imidacloprid degradation by hydroxyl radical produced in-situ by conventional Fenton process is discussed. Furthermore, it has been studied the influence of propylene glycol, which is a usual excipient found in the commercial pesticides containing imidacloprid, on the conventional Fenton process performance. A two-stage degradation kinetics was observed: (i) a rapid initial decay on the first 5 min of treatment, followed by (ii) a slower kinetics defined by the Fenton-like reaction of Fe2+ catalyst regeneration. The influence of several variables on the abatement of imidacloprid such Fe2+ and H2O2 initial concentration or propylene glycol ratios have been evaluated. Experimental results demonstrate that complete imidacloprid abatement is attained under optimal conditions of 8.0 mM of H2O2 and 0.8 mM of Fe2+ after 120 min of treatment at acidic pH. However, increasing concentrations of propylene glycol diminishes the overall performance due to the competitive consumption of hydroxyl radicals.
Acknowledgements
The authors would like to thank the Ministry of Science and Technology, Taiwan, for financially supporting this research under Contract No. 102-2221-E-041-001-MY3.
References
[1] Migheli M. J Clean Prod. 2017;145:188–198.10.1016/j.jclepro.2017.01.045Search in Google Scholar
[2] Jürgens MD, Crosse J, Hamilton PB, Johnson AC, Jones KC. Chemosphere. 2016;162:333–334.10.1016/j.chemosphere.2016.07.078Search in Google Scholar PubMed
[3] Pavlikova N, Smetana P, Halada P. Kovar. J Environ Res. 2015;142:257–263.10.1016/j.envres.2015.06.046Search in Google Scholar PubMed
[4] Daam MA, Pereira ACS, Silva E, Caetano L, Cerejeira MJ. Ecotox Environ Safe. 2013;97:78–85.10.1016/j.ecoenv.2013.07.011Search in Google Scholar PubMed
[5] Cycon M, Piotrowska-Seget Z. J Environ Sci. 2015;27:147–158.10.1016/j.jes.2014.05.034Search in Google Scholar PubMed
[6] Diaz JMC, Martin-Laurent F, Beguet J, Nogales R, Romero E. Sci Total Environ. 2017;579:1111–1119.10.1016/j.scitotenv.2016.11.082Search in Google Scholar PubMed
[7] Babu BR, Meera KMS, Venkatesan P. Sustain Environ Res. 2011;21:401–406.Search in Google Scholar
[8] Pérez JAS, Sánchez IMR, Carra I, Reina AC, López JLC, Malato S. J Hazard Mater. 2013;244-245:195–203.10.1016/j.jhazmat.2012.11.015Search in Google Scholar PubMed
[9] Giannakis S, Vives FAG, Grandjean D, Magnet A, De Alencastro LF, Pulgarin C. Water Res. 2015;84:295–306.10.1016/j.watres.2015.07.030Search in Google Scholar PubMed
[10] Misra NN. Trends Food Sci Technol. 2015;45:229–244.10.1016/j.tifs.2015.06.005Search in Google Scholar
[11] Garcia-Segura S, Bellotindos LM, Huang Y-H, Brillas E, Lu M-C. J Taiwan Inst Chem E. 2016;67:211–225.10.1016/j.jtice.2016.07.021Search in Google Scholar
[12] Cheng M, Zeng G, Huang D, Lai C, Xu P, Zhang C, et al. Chem Eng J. 2016;284:582–598.10.1016/j.cej.2015.09.001Search in Google Scholar
[13] Wantala K, Laokiat L, Khemthong P, Grisdanurak N, Fukaya K. J Taiwan Inst Chem E. 2010;41:612–616.10.1016/j.jtice.2010.01.008Search in Google Scholar
[14] Garcia-Segura S, Brillas E. J Photoch Photobio C. 2017;31:1–35.10.1016/j.jphotochemrev.2017.01.005Search in Google Scholar
[15] De Luna MDG, Lin JC-T, Gotostos MJN, Lu M-C. Sustain Environ Res. 2016;26:161–167.10.1016/j.serj.2016.02.001Search in Google Scholar
[16] Lee C, Yoon J, Von Gunten U. Water Res. 2007;41:581–590.10.1016/j.watres.2006.10.033Search in Google Scholar PubMed
[17] Valdés H, Zaror CA, Jekel M. J Adv Oxid Technol. 2016;19:338–346.10.1515/jaots-2016-0218Search in Google Scholar
[18] Garcia-Segura S, Mostafa E, Baltruschat H. Appl Catal B: Environ. 2017;207:376–384.10.1016/j.apcatb.2017.02.046Search in Google Scholar
[19] Moreira FC, Soler J, Alpendurada MF, Boavenura RAR, Brillas E, Vilar VJP. Water Res. 2016;105:251–263.10.1016/j.watres.2016.08.036Search in Google Scholar PubMed
[20] García O, Isarain-Chávez E, Garcia-Segura S, Brillas E, Peralta-Hernández JM. Electrocatalysis. 2013;4:224–234.10.1007/s12678-013-0135-4Search in Google Scholar
[21] Garcia-Segura S, Dosta S, Guilemany JM, Brillas E. Appl Catal B: Environ. 2013;132–133:142–150.10.1016/j.apcatb.2012.11.037Search in Google Scholar
[22] Dosta S, Robotti M, Garcia-Segura S, Brillas E, Cano IG, Guilemany JM. Appl Catal B: Environ. 2016;189:151–159.10.1016/j.apcatb.2016.02.048Search in Google Scholar
[23] Oturan MA, Oturan N, Edelahi MC, Podvorica FI, El Kacemi K. Chem Eng J. 2011;171:127–135.10.1016/j.cej.2011.03.072Search in Google Scholar
[24] Çelebi MS, Oturan N, Zazou H, Hamdani M, Oturan MA. Sep Purif Technol. 2015;156:996–1002.10.1016/j.seppur.2015.07.025Search in Google Scholar
[25] Antonin VS, Santos MC, Garcia-Segura S, Brillas E. Water Res. 2015;83:31–41.10.1016/j.watres.2015.05.066Search in Google Scholar
[26] Zazou H, Oturan N, Sönmez-Çelebi M, Hamdani M, Oturan MA. J Electroanal Chem. 2016;774:22–30.10.1016/j.jelechem.2016.04.051Search in Google Scholar
[27] Pérez T, Garcia-Segura S, El-Ghenymy A, Nava JL, Brillas E. Electrochim Acta. 2015;165:173–181.10.1016/j.electacta.2015.02.243Search in Google Scholar
[28] Kang S-F, Liao C-H, Po S-T. Chemosphere. 2000;41:1287–1294.10.1016/S0045-6535(99)00524-XSearch in Google Scholar
[29] Masomboon N, Chen C-W, Anotai J, Lu M-C. Sustain Environ Res. 2011;21:101–107.Search in Google Scholar
[30] Litter MI, Slodowicz M. J Adv Oxid Technol. 2017;20. 10.1515/jaots-2016-0164..Search in Google Scholar
[31] Babuponnusami A, Muthukumar K. J Environ Manage. 2014;2:557–572.10.1016/j.jece.2013.10.011Search in Google Scholar
[32] Dos Santos AJ, De Lima MD, Da Silva DR, Garcia-Segura S, Martínez-Huitle CA. Electrochim. Acta. 2016;208:156–163.10.1016/j.electacta.2016.05.015Search in Google Scholar
[33] Azizi A, Moghaddam A, Maknoon R, Kowsari E. Process Saf Environ. 2015;95:255–264.10.1016/j.psep.2015.03.012Search in Google Scholar
[34] De Luna MDG, Briones RM, Su -C-C, Lu M-C. Chemosphere. 2013;90:1444–1448.10.1016/j.chemosphere.2012.09.003Search in Google Scholar PubMed
[35] Huang Y-H, Huang Y-J, Tsai H-C, Chen H-T. J Taiwan Inst Chem E. 2010;41:699–704.10.1016/j.jtice.2010.01.012Search in Google Scholar
[36] Chan KH, Chu W. J Hazard Mater. 2005;118:227–237.10.1016/j.jhazmat.2004.11.008Search in Google Scholar PubMed
[37] Lu M-C, Chang Y-G, Chen I-M, Huang -Y-Y. J Environ Manage. 2005;75:177–182.10.1016/j.jenvman.2004.12.003Search in Google Scholar PubMed
[38] Munoz M, De Pedro ZM, Casas JA, Rodríguez JJ. Appl Catal B: Environ. 2015;176–177:249–265.10.1016/j.apcatb.2015.04.003Search in Google Scholar
[39] Garcia-Segura S, Anotai J, Singhadech S, Lu M-C. Process Saf Environ. 2017;106:60–67.10.1016/j.psep.2016.12.011Search in Google Scholar
[40] Matira EM, Chen T-C, Lu M-C, Dalida ML. J Hazard Mater. 2015;300:218–226.10.1016/j.jhazmat.2015.06.069Search in Google Scholar PubMed
[41] Huang C-P, Huang Y-H. Appl Catal A. 2008;346:140–148.10.1016/j.apcata.2008.05.017Search in Google Scholar
[42] Anotai J, Chen C-M, Bellotindos L, Lu M-C. Biores Technol. 2012;113:272–275.10.1016/j.biortech.2011.11.100Search in Google Scholar PubMed
[43] Kajitvichyanukul P, Lu M-C, Liao C-H, Wirojanagud W, Koottatep T. J Hazard Mater. 2006;135:337–343.10.1016/j.jhazmat.2005.11.071Search in Google Scholar PubMed
[44] Garcia-Segura S, Brillas E, Cornejo-Ponce L, Salazar R. Sol Energy. 2016;124:242–253.10.1016/j.solener.2015.11.033Search in Google Scholar
[45] Papoutsakis S, Miralles-Cuevas S, Oller I, Sanchez JLG, Pulgarin C, Malato S. Catal Today. 2015;252:61–69.10.1016/j.cattod.2015.02.005Search in Google Scholar
[46] De Luna MDG, Veciana ML, Su -C-C, Lu M-C. J Hazard Mater. 2012;217–218:200–207.10.1016/j.jhazmat.2012.03.018Search in Google Scholar PubMed
[47] Colades JI, De Luna MDG, Su -C-C, Lu M-C. Sep Purif Technol. 2015;145:104–112.10.1016/j.seppur.2015.02.039Search in Google Scholar
[48] Fan C, Li S-J. Ipcbe. 2014;61:45–49.10.1016/j.marpetgeo.2013.09.007Search in Google Scholar
[49] Yu W, Yang J, Shi Y, Song J, Shi Y, Xiao J, et al. Water Res. 2016;95:124–133.10.1016/j.watres.2016.03.016Search in Google Scholar PubMed
[50] Masomboon N, Ratanatamskul C, Lu M-C. J Hazard Mater. 2011;192:347–353.Search in Google Scholar
© 2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Editorial
- Excitation Kinetics of Oxygen O(1D) State in Low-Pressure Oxygen Plasma and the Effect of Electron Energy Distribution Function
- Using amino-functionalized Fe3O4-WO3 nanoparticles for diazinon removal from synthetic and real water samples in presence of UV irradiation
- Treatment of high salinity wastewater using CWPO process for reuse
- Electrochemical Advanced Oxidation Processes (EAOP) to degrade per- and polyfluoroalkyl substances (PFASs)
- Effect of feedstock impurities on activity and selectivity of V-Mo-Nb-Te-Ox catalyst in ethane oxidative dehydrogenation
- Photocatalytic Degradation of Azo Dyes Over Semiconductors Supported on Polyethylene Terephthalate and Polystyrene Substrates
- Effects of calcination temperature on sol-gel synthesis of porous La2Ti2O7 photocatalyst on degradation of Reactive Brilliant Red X3B
- ClO2-oxidation-based demulsification of oil-water transition layer in oilfields: An experimental study
- Semi-permanent hair dyes degradation at W/WO3 photoanode under controlled current density assisted by visible light
- Degradation of PVA (polyvinyl alcohol) in wastewater by advanced oxidation processes
- Degradation of imidacloprid insecticide in a binary mixture with propylene glycol by conventional fenton process
- Gemini surfactant-assisted synthesis of BiOBr with superior visible light-induced photocatalytic activity towards RhB degradation
- Photocatalytic paraquat degradation over TiO2 modified by hydrothermal technique in alkaline solution
- Enhancement of Profenofos Remediation Using Stimulated Bioaugmentation Technique
- Mechanistic insight on the sonolytic degradation of phenol at interface and bulk using additives
- Biosolubilization of low-grade rock phosphate by mixed thermophilic iron-oxidizing bacteria
- Degradation of methyl orange using dielectric barrier discharge water falling film reactor
- Rapid prediction of hydrogen peroxide concentration eletrogenerated with boron doped diamond electrodes
Articles in the same Issue
- Editorial
- Excitation Kinetics of Oxygen O(1D) State in Low-Pressure Oxygen Plasma and the Effect of Electron Energy Distribution Function
- Using amino-functionalized Fe3O4-WO3 nanoparticles for diazinon removal from synthetic and real water samples in presence of UV irradiation
- Treatment of high salinity wastewater using CWPO process for reuse
- Electrochemical Advanced Oxidation Processes (EAOP) to degrade per- and polyfluoroalkyl substances (PFASs)
- Effect of feedstock impurities on activity and selectivity of V-Mo-Nb-Te-Ox catalyst in ethane oxidative dehydrogenation
- Photocatalytic Degradation of Azo Dyes Over Semiconductors Supported on Polyethylene Terephthalate and Polystyrene Substrates
- Effects of calcination temperature on sol-gel synthesis of porous La2Ti2O7 photocatalyst on degradation of Reactive Brilliant Red X3B
- ClO2-oxidation-based demulsification of oil-water transition layer in oilfields: An experimental study
- Semi-permanent hair dyes degradation at W/WO3 photoanode under controlled current density assisted by visible light
- Degradation of PVA (polyvinyl alcohol) in wastewater by advanced oxidation processes
- Degradation of imidacloprid insecticide in a binary mixture with propylene glycol by conventional fenton process
- Gemini surfactant-assisted synthesis of BiOBr with superior visible light-induced photocatalytic activity towards RhB degradation
- Photocatalytic paraquat degradation over TiO2 modified by hydrothermal technique in alkaline solution
- Enhancement of Profenofos Remediation Using Stimulated Bioaugmentation Technique
- Mechanistic insight on the sonolytic degradation of phenol at interface and bulk using additives
- Biosolubilization of low-grade rock phosphate by mixed thermophilic iron-oxidizing bacteria
- Degradation of methyl orange using dielectric barrier discharge water falling film reactor
- Rapid prediction of hydrogen peroxide concentration eletrogenerated with boron doped diamond electrodes