Startseite Sphingolipids in viral infection
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sphingolipids in viral infection

  • Jürgen Schneider-Schaulies EMAIL logo und Sibylle Schneider-Schaulies
Veröffentlicht/Copyright: 20. Januar 2015

Abstract

Viruses exploit membranes and their components such as sphingolipids in all steps of their life cycle including attachment and membrane fusion, intracellular transport, replication, protein sorting and budding. Examples for sphingolipid-dependent virus entry are found for: human immunodeficiency virus (HIV), which besides its protein receptors also interacts with glycosphingolipids (GSLs); rhinovirus, which promotes the formation of ceramide-enriched platforms and endocytosis; or measles virus (MV), which induces the surface expression of its own receptor CD150 via activation of sphingomyelinases (SMases). While SMase activation was implicated in Ebola virus (EBOV) attachment, the virus utilizes the cholesterol transporter Niemann-Pick C protein 1 (NPC1) as ‘intracellular’ entry receptor after uptake into endosomes. Differential activities of SMases also affect the intracellular milieu required for virus replication. Sindbis virus (SINV), for example, replicates better in cells lacking acid SMase (ASMase). Defined lipid compositions of viral assembly and budding sites influence virus release and infectivity, as found for hepatitis C virus (HCV) or HIV. And finally, viruses manipulate cellular signaling and the sphingolipid metabolism to their advantage, as for example influenza A virus (IAV), which activates sphingosine kinase 1 and the transcription factor NF-κB.


Corresponding author: Jürgen Schneider-Schaulies, Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany, e-mail:

Acknowledgments

The authors thank the Deutsche Forschungsgemeinschaft for financial support (Research Unit 2123).

References

Alfsen, A. and Bomsel, M. (2002). HIV-1 gp41 envelope residues 650–685 exposed on native virus act as a lectin to bind epithelial cell galactosyl ceramide. J. Biol. Chem. 277, 25649–25659.10.1074/jbc.M200554200Suche in Google Scholar PubMed

Alvisi, G., Madan, V., and Bartenschlager, R. (2011). Hepatitis C virus and host cell lipids: an intimate connection. RNA Biol. 8, 258–269.10.4161/rna.8.2.15011Suche in Google Scholar PubMed

Amako, Y., Syed, G.H., and Siddiqui, A. (2011). Protein kinase D negatively regulates hepatitis C virus secretion through phosphorylation of oxysterol-binding protein and ceramide transfer protein. J. Biol. Chem. 286, 11265–11274.10.1074/jbc.M110.182097Suche in Google Scholar PubMed PubMed Central

Avota, E., Gulbins, E., and Schneider-Schaulies, S. (2011). DC-SIGN mediated sphingomyelinase-activation and ceramide generation is essential for enhancement of viral uptake in dendritic cells. PLoS Pathog. 7, e1001290.10.1371/journal.ppat.1001290Suche in Google Scholar PubMed PubMed Central

Blanchet, F., Moris, A., Mitchell, J.P., and Piguet, V. (2011). A look at HIV journey: from dendritic cells to infection spread in CD4+ T cells. Curr. Opin. HIV AIDS 6, 391–397.10.1097/COH.0b013e328349b0a0Suche in Google Scholar PubMed

Bollinger, C.R., Teichgraber, V., and Gulbins, E. (2005). Ceramide-enriched membrane domains. Biochim. Biophys. Acta 1746, 284–294.10.1016/j.bbamcr.2005.09.001Suche in Google Scholar PubMed

Bonsch, C., Zuercher, C., Lieby, P., Kempf, C., and Ros, C. (2010). The globoside receptor triggers structural changes in the B19 virus capsid that facilitate virus internalization. J. Virol. 84, 11737–11746.10.1128/JVI.01143-10Suche in Google Scholar PubMed PubMed Central

Brugger, B., Glass, B., Haberkant, P., Leibrecht, I., Wieland, F.T., and Krausslich, H.G. (2006). The HIV lipidome: a raft with an unusual composition. Proc. Natl. Acad. Sci. USA 103, 2641–2646.10.1073/pnas.0511136103Suche in Google Scholar PubMed PubMed Central

Burckhardt, C.J. and Greber, U.F. (2009). Virus movements on the plasma membrane support infection and transmission between cells. PLoS Pathog. 5, e1000621.10.1371/journal.ppat.1000621Suche in Google Scholar PubMed PubMed Central

Burckhardt, C.J., Suomalainen, M., Schoenenberger, P., Boucke, K., Hemmi, S., and Greber, U.F. (2011). Drifting motions of the adenovirus receptor CAR and immobile integrins initiate virus uncoating and membrane lytic protein exposure. Cell Host. Microb. 10, 105–117.10.1016/j.chom.2011.07.006Suche in Google Scholar PubMed

Carette, J.E., Raaben, M., Wong, A.C., Herbert, A.S., Obernosterer, G., Mulherkar, N., Kuehne, A.I., Kranzusch, P.J., Griffin, A.M., Ruthel, G., et al. (2011). Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477, 340–343.10.1038/nature10348Suche in Google Scholar PubMed PubMed Central

Cook, D.G., Fantini, J., Spitalnik, S.L., and Gonzalez-Scarano, F. (1994). Binding of human immunodeficiency virus type I (HIV-1) gp120 to galactosylceramide (GalCer): relationship to the V3 loop. Virology 201, 206–214.10.1006/viro.1994.1287Suche in Google Scholar PubMed

Cote, M., Misasi, J., Ren, T., Bruchez, A., Lee, K., Filone, C.M., Hensley, L., Li, Q., Ory, D., Chandran, K., et al. (2011). Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 477, 344–348.10.1038/nature10380Suche in Google Scholar PubMed PubMed Central

Dai, L., Plaisance-Bonstaff, K., Voelkel-Johnson, C., Smith, C.D., Ogretmen, B., Qin, Z., and Parsons, C. (2014). Sphingosine kinase-2 maintains viral latency and survival for KSHV-infected endothelial cells. PLoS One 9, e102314.10.1371/journal.pone.0102314Suche in Google Scholar PubMed PubMed Central

Dorosko, S.M. and Connor, R.I. (2010). Primary human mammary epithelial cells endocytose HIV-1 and facilitate viral infection of CD4+ T lymphocytes. J. Virol. 84, 10533–10542.10.1128/JVI.01263-10Suche in Google Scholar PubMed PubMed Central

Dreschers, S., Franz, P., Dumitru, C., Wilker, B., Jahnke, K., and Gulbins, E. (2007). Infections with human rhinovirus induce the formation of distinct functional membrane domains. Cell Physiol. Biochem. 20, 241–254.10.1159/000104170Suche in Google Scholar PubMed

Dumitru, C.A., Dreschers, S., and Gulbins, E. (2006). Rhinoviral infections activate p38MAP-kinases via membrane rafts and RhoA. Cell Physiol. Biochem. 17, 159–166.10.1159/000092077Suche in Google Scholar PubMed

Ewers, H., Smith, A.E., Sbalzarini, I.F., Lilie, H., Koumoutsakos, P., and Helenius, A. (2005). Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. Proc. Natl. Acad. Sci. USA 102, 15110–15115.10.1073/pnas.0504407102Suche in Google Scholar PubMed PubMed Central

Finnegan, C.M. and Blumenthal, R. (2006). Fenretinide inhibits HIV infection by promoting viral endocytosis. Antiviral Res. 69, 116–123.10.1016/j.antiviral.2005.11.002Suche in Google Scholar PubMed

Finnegan, C.M., Rawat, S.S., Puri, A., Wang, J.M., Ruscetti, F.W., and Blumenthal, R. (2004). Ceramide, a target for antiretroviral therapy. Proc. Natl. Acad. Sci. USA 101, 15452–15457.10.1073/pnas.0402874101Suche in Google Scholar PubMed PubMed Central

Finnegan, C.M., Rawat, S.S., Cho, E.H., Guiffre, D.L., Lockett, S., Merrill, A.H., Jr., and Blumenthal, R. (2007). Sphingomyelinase restricts the lateral diffusion of CD4 and inhibits human immunodeficiency virus fusion. J. Virol. 81, 5294–5304.10.1128/JVI.02553-06Suche in Google Scholar PubMed PubMed Central

Fischl, W. and Bartenschlager, R. (2011). Exploitation of cellular pathways by Dengue virus. Curr Opin Microbiol. 14, 470–475.10.1016/j.mib.2011.07.012Suche in Google Scholar PubMed

Gassert, E., Avota, E., Harms, H., Krohne, G., Gulbins, E., and Schneider-Schaulies, S. (2009). Induction of membrane ceramides: a novel strategy to interfere with T lymphocyte cytoskeletal reorganisation in viral immunosuppression. PLoS Pathog 5, e1000623.10.1371/journal.ppat.1000623Suche in Google Scholar PubMed PubMed Central

Geijtenbeek, T.B. and Gringhuis, S.I. (2009). Signalling through C-type lectin receptors: shaping immune responses. Nat. Rev. Immunol. 9, 465–479.10.1038/nri2569Suche in Google Scholar PubMed PubMed Central

Gerl, M.J., Sampaio, J.L., Urban, S., Kalvodova, L., Verbavatz, J.M., Binnington, B., Lindemann, D., Lingwood, C.A., Shevchenko, A., Schroeder, C., et al. (2012). Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane. J. Cell. Biol. 196, 213–221.10.1083/jcb.201108175Suche in Google Scholar PubMed PubMed Central

Grassme, H., Riehle, A., Wilker, B., and Gulbins, E. (2005). Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms. J. Biol. Chem. 280, 26256–26262.10.1074/jbc.M500835200Suche in Google Scholar PubMed

Grassme, H., Riethmuller, J., and Gulbins, E. (2007). Biological aspects of ceramide-enriched membrane domains. Prog. Lipid Res. 46, 161–170.10.1016/j.plipres.2007.03.002Suche in Google Scholar PubMed

Gringhuis, S.I., den Dunnen, J., Litjens, M., van der Vlist, M., and Geijtenbeek, T.B. (2009). Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat. Immunol. 10, 1081–1088.10.1038/ni.1778Suche in Google Scholar PubMed

Gulbins, E. and Grassme, H. (2002). Ceramide and cell death receptor clustering. Biochim. Biophys. Acta 1585, 139–145.10.1016/S1388-1981(02)00334-7Suche in Google Scholar

Gulbins, E., Dreschers, S., Wilker, B., and Grassme, H. (2004). Ceramide, membrane rafts and infections. J. Mol. Med. 82, 357–363.10.1007/s00109-004-0539-ySuche in Google Scholar PubMed

Hammache, D., Pieroni, G., Yahi, N., Delezay, O., Koch, N., Lafont, H., Tamalet, C., and Fantini, J. (1998a). Specific interaction of HIV-1 and HIV-2 surface envelope glycoproteins with monolayers of galactosylceramide and ganglioside GM3. J. Biol. Chem. 273, 7967–7971.10.1074/jbc.273.14.7967Suche in Google Scholar PubMed

Hammache, D., Yahi, N., Pieroni, G., Ariasi, F., Tamalet, C., and Fantini, J. (1998b). Sequential interaction of CD4 and HIV-1 gp120 with a reconstituted membrane patch of ganglioside GM3: implications for the role of glycolipids as potential HIV-1 fusion cofactors. Biochem. Biophys. Res. Commun. 246, 117–122.10.1006/bbrc.1998.8531Suche in Google Scholar PubMed

Harrison, A.L., Olsson, M.L., Jones, R.B., Ramkumar, S., Sakac, D., Binnington, B., Henry, S., Lingwood, C.A., and Branch, D.R. (2010). A synthetic globotriaosylceramide analogue inhibits HIV-1 infection in vitro by two mechanisms. Glycoconj. J. 27, 515–524.10.1007/s10719-010-9297-ySuche in Google Scholar PubMed

Hatch, S.C., Archer, J., and Gummuluru, S. (2009). Glycosphingolipid composition of human immunodeficiency virus type 1 (HIV-1) particles is a crucial determinant for dendritic cell-mediated HIV-1 trans-infection. J. Virol. 83, 3496–3506.10.1128/JVI.02249-08Suche in Google Scholar PubMed PubMed Central

Hayashi, Y., Nemoto-Sasaki, Y., Tanikawa, T., Oka, S., Tsuchiya, K., Zama, K., Mitsutake, S., Sugiura, T., and Yamashita, A. (2014). Sphingomyelin synthase 2, but not sphingomyelin synthase 1, is involved in HIV-1 envelope-mediated membrane fusion. J. Biol. Chem. 289, 30842–30856.10.1074/jbc.M114.574285Suche in Google Scholar PubMed PubMed Central

Holopainen, J.M., Angelova, M.I., and Kinnunen, P.K. (2000). Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys J. 78, 830–838.10.1016/S0006-3495(00)76640-9Suche in Google Scholar PubMed PubMed Central

Izquierdo-Useros, N., Naranjo-Gomez, M., Archer, J., Hatch, S.C., Erkizia, I., Blanco, J., Borras, F.E., Puertas, M.C., Connor, J.H., Fernandez-Figueras, M.T., et al. (2009). Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 113, 2732–2741.10.1182/blood-2008-05-158642Suche in Google Scholar PubMed PubMed Central

Izquierdo-Useros, N., Naranjo-Gomez, M., Erkizia, I., Puertas, M.C., Borras, F.E., Blanco, J., and Martinez-Picado, J. (2010). HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse? PLoS Pathog. 6, e1000740.10.1371/journal.ppat.1000740Suche in Google Scholar PubMed PubMed Central

Izquierdo-Useros, N., Lorizate, M., Puertas, M.C., Rodriguez-Plata, M.T., Zangger, N., Erikson, E., Pino, M., Erkizia, I., Glass, B., Clotet, B., et al. (2012). Siglec-1 is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides. PLoS Biol. 10, e1001448.10.1371/journal.pbio.1001448Suche in Google Scholar PubMed PubMed Central

Jan, J.T., Chatterjee, S., and Griffin, D.E. (2000). Sindbis virus entry into cells triggers apoptosis by activating sphingomyelinase, leading to the release of ceramide. J. Virol. 74, 6425–6432.10.1128/JVI.74.14.6425-6432.2000Suche in Google Scholar

Khan, F., Proulx, F., and Lingwood, C.A. (2009). Detergent-resistant globotriaosyl ceramide may define verotoxin/glomeruli-restricted hemolytic uremic syndrome pathology. Kidney Int. 75, 1209–1216.10.1038/ki.2009.7Suche in Google Scholar PubMed

Kumar, N., Xin, Z.T., Liang, Y., and Ly, H. (2008). NF-κB signaling differentially regulates influenza virus RNA synthesis. J. Virol. 82, 9880–9889.10.1128/JVI.00909-08Suche in Google Scholar PubMed PubMed Central

Lehmann, M.J., Sherer, N.M., Marks, C.B., Pypaert, M., and Mothes, W. (2005). Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J. Cell. Biol. 170, 317–325.10.1083/jcb.200503059Suche in Google Scholar PubMed PubMed Central

Lingwood, C.A., Binnington, B., Manis, A., and Branch, D.R. (2010a). Globotriaosyl ceramide receptor function – where membrane structure and pathology intersect. FEBS Lett. 584, 1879–1886.10.1016/j.febslet.2009.11.089Suche in Google Scholar PubMed

Lingwood, C.A., Manis, A., Mahfoud, R., Khan, F., Binnington, B., and Mylvaganam, M. (2010b). New aspects of the regulation of glycosphingolipid receptor function. Chem. Phys. Lipids 163, 27–35.10.1016/j.chemphyslip.2009.09.001Suche in Google Scholar PubMed

Lingwood, D. and Simons, K. (2010). Lipid rafts as a membrane-organizing principle. Science 327, 46–50.10.1126/science.1174621Suche in Google Scholar PubMed

Lingwood, D., Binnington, B., Rog, T., Vattulainen, I., Grzybek, M., Coskun, U., Lingwood, C.A., and Simons, K. (2011). Cholesterol modulates glycolipid conformation and receptor activity. Nat. Chem. Biol. 7, 260–262.10.1038/nchembio.551Suche in Google Scholar PubMed

Liu, S.T., Sharon-Friling, R., Ivanova, P., Milne, S.B., Myers, D.S., Rabinowitz, J.D., Brown, H.A., and Shenk, T. (2011). Synaptic vesicle-like lipidome of human cytomegalovirus virions reveals a role for SNARE machinery in virion egress. Proc. Natl. Acad. Sci. USA 108, 12869–12874.10.1073/pnas.1109796108Suche in Google Scholar PubMed PubMed Central

Lund, N., Branch, D.R., Sakac, D., Lingwood, C.A., Siatskas, C., Robinson, C.J., Brady, R.O., and Medin, J.A. (2005). Lack of susceptibility of cells from patients with Fabry disease to productive infection with R5 human immunodeficiency virus. AIDS 19, 1543–1546.10.1097/01.aids.0000183521.90878.79Suche in Google Scholar PubMed

Lund, N., Branch, D.R., Mylvaganam, M., Chark, D., Ma, X.Z., Sakac, D., Binnington, B., Fantini, J., Puri, A., Blumenthal, R., et al. (2006). A novel soluble mimic of the glycolipid, globotriaosyl ceramide inhibits HIV infection. AIDS 20, 333–343.10.1097/01.aids.0000206499.78664.58Suche in Google Scholar PubMed

Lund, N., Olsson, M.L., Ramkumar, S., Sakac, D., Yahalom, V., Levene, C., Hellberg, A., Ma, X.Z., Binnington, B., Jung, D., et al. (2009). The human P(k) histo-blood group antigen provides protection against HIV-1 infection. Blood 113, 4980–4991.10.1182/blood-2008-03-143396Suche in Google Scholar PubMed

Machesky, N.J., Zhang, G., Raghavan, B., Zimmerman, P., Kelly, S.L., Merrill, A.H., Jr., Waldman, W.J., Van Brocklyn, J.R., and Trgovcich, J. (2008). Human cytomegalovirus regulates bioactive sphingolipids. J. Biol. Chem. 283, 26148–26160.10.1074/jbc.M710181200Suche in Google Scholar PubMed PubMed Central

Magerus-Chatinet, A., Yu, H., Garcia, S., Ducloux, E., Terris, B., and Bomsel, M. (2007). Galactosyl ceramide expressed on dendritic cells can mediate HIV-1 transfer from monocyte derived dendritic cells to autologous T cells. Virology 362, 67–74.10.1016/j.virol.2006.11.035Suche in Google Scholar PubMed

Mercer, J. and Helenius, A. (2008). Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320, 531–535.10.1126/science.1155164Suche in Google Scholar PubMed

Mercer, J. and Helenius, A. (2009). Virus entry by macropinocytosis. Nat. Cell. Biol. 11, 510–520.10.1038/ncb0509-510Suche in Google Scholar PubMed

Merz, A., Long, G., Hiet, M.S., Brugger, B., Chlanda, P., Andre, P., Wieland, F., Krijnse-Locker, J., and Bartenschlager, R. (2011). Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome. J. Biol. Chem. 286, 3018–3032.10.1074/jbc.M110.175018Suche in Google Scholar PubMed PubMed Central

Miller, E.H., Obernosterer, G., Raaben, M., Herbert, A.S., Deffieu, M.S., Krishnan, A., Ndungo, E., Sandesara, R.G., Carette, J.E., Kuehne, A.I., et al. (2012a). Ebola virus entry requires the host-programmed recognition of an intracellular receptor. Embo J. 31, 1947–1960.10.1038/emboj.2012.53Suche in Google Scholar PubMed PubMed Central

Miller, M.E., Adhikary, S., Kolokoltsov, A.A., and Davey, R.A. (2012b). Ebolavirus requires acid sphingomyelinase activity and plasma membrane sphingomyelin for infection. J. Virol. 86, 7473–7483.10.1128/JVI.00136-12Suche in Google Scholar PubMed PubMed Central

Monick, M.M., Cameron, K., Powers, L.S., Butler, N.S., McCoy, D., Mallampalli, R.K., and Hunninghake, G.W. (2004). Sphingosine kinase mediates activation of extracellular signal-related kinase and Akt by respiratory syncytial virus. Am. J. Respir. Cell. Mol. Biol. 30, 844–852.10.1165/rcmb.2003-0424OCSuche in Google Scholar PubMed

Mothes, W., Sherer, N.M., Jin, J., and Zhong, P. (2010). Virus cell-to-cell transmission. J. Virol. 84, 8360–8368.10.1128/JVI.00443-10Suche in Google Scholar PubMed PubMed Central

Müller, N., Collenburg, L., Grssmé, H., and Schneider-Schaulies, S. (2014). Neutral sphingomyelinase in physiological and measles virus induced T cell suppression. PLoS Pathog. 10, e1004574.10.1371/journal.ppat.1004574Suche in Google Scholar PubMed PubMed Central

Ng, C.G. and Griffin, D.E. (2006). Acid sphingomyelinase deficiency increases susceptibility to fatal alphavirus encephalomyelitis. J. Virol. 80, 10989–10999.10.1128/JVI.01154-06Suche in Google Scholar PubMed PubMed Central

Ng, C.G., Coppens, I., Govindarajan, D., Pisciotta, J., Shulaev, V., and Griffin, D.E. (2008). Effect of host cell lipid metabolism on alphavirus replication, virion morphogenesis, and infectivity. Proc. Natl. Acad. Sci. USA 105, 16326–16331.10.1073/pnas.0808720105Suche in Google Scholar PubMed PubMed Central

Perera, M.N., Ganesan, V., Siskind, L.J., Szulc, Z.M., Bielawski, J., Bielawska, A., Bittman, R., and Colombini, M. (2012). Ceramide channels: influence of molecular structure on channel formation in membranes. Biochim. Biophys. Acta 1818, 1291–1301.10.1016/j.bbamem.2012.02.010Suche in Google Scholar PubMed PubMed Central

Puri, A., Rawat, S.S., Lin, H.M., Finnegan, C.M., Mikovits, J., Ruscetti, F.W., and Blumenthal, R. (2004). An inhibitor of glycosphingolipid metabolism blocks HIV-1 infection of primary T-cells. AIDS 18, 849–858.10.1097/00002030-200404090-00002Suche in Google Scholar PubMed

Rahmaniyan, M., Curley, R.W., Jr., Obeid, L.M., Hannun, Y.A., and Kraveka, J.M. (2011). Identification of dihydroceramide desaturase as a direct in vitro target for fenretinide. J. Biol. Chem. 286, 24754–24764.10.1074/jbc.M111.250779Suche in Google Scholar PubMed PubMed Central

Ramkumar, S., Sakac, D., Binnington, B., Branch, D.R., and Lingwood, C.A. (2009). Induction of HIV-1 resistance: cell susceptibility to infection is an inverse function of globotriaosyl ceramide levels. Glycobiology 19, 76–82.10.1093/glycob/cwn106Suche in Google Scholar PubMed

Rawat, S.S., Gallo, S.A., Eaton, J., Martin, T.D., Ablan, S., KewalRamani, V.N., Wang, J.M., Blumenthal, R., and Puri, A. (2004). Elevated expression of GM3 in receptor-bearing targets confers resistance to human immunodeficiency virus type 1 fusion. J. Virol. 78, 7360–7368.10.1128/JVI.78.14.7360-7368.2004Suche in Google Scholar PubMed PubMed Central

Rawat, S.S., Zimmerman, C., Johnson, B.T., Cho, E., Lockett, S.J., Blumenthal, R., and Puri, A. (2008). Restricted lateral mobility of plasma membrane CD4 impairs HIV-1 envelope glycoprotein mediated fusion. Mol. Membr. Biol. 25, 830000–94.10.1080/09687680701613713Suche in Google Scholar PubMed PubMed Central

Sainz, B., Jr., Barretto, N., Martin, D.N., Hiraga, N., Imamura, M., Hussain, S., Marsh, K.A., Yu, X., Chayama, K., Alrefai, W.A., et al. (2012). Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat. Med. 18, 281–285.10.1038/nm.2581Suche in Google Scholar PubMed PubMed Central

Schelhaas, M., Ewers, H., Rajamaki, M.L., Day, P.M., Schiller, J.T., and Helenius, A. (2008). Human papillomavirus type 16 entry: retrograde cell surface transport along actin-rich protrusions. PLoS Pathog. 4, e1000148.10.1371/journal.ppat.1000148Suche in Google Scholar PubMed PubMed Central

Seo, Y.J., Blake, C., Alexander, S., and Hahm, B. (2010). Sphingosine 1-phosphate-metabolizing enzymes control influenza virus propagation and viral cytopathogenicity. J. Virol. 84, 8124–8131.10.1128/JVI.00510-10Suche in Google Scholar PubMed PubMed Central

Seo, Y.J., Pritzl, C.J., Vijayan, M., Bomb, K., McClain, M.E., Alexander, S., and Hahm, B. (2013). Sphingosine kinase 1 serves as a pro-viral factor by regulating viral RNA synthesis and nuclear export of viral ribonucleoprotein complex upon influenza virus infection. PLoS One 8, e75005.10.1371/journal.pone.0075005Suche in Google Scholar PubMed PubMed Central

Sherer, N.M., Lehmann, M.J., Jimenez-Soto, L.F., Horensavitz, C., Pypaert, M., and Mothes, W. (2007). Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat. Cell. Biol. 9, 310–315.10.1038/ncb1544Suche in Google Scholar PubMed PubMed Central

Tani, H., Shiokawa, M., Kaname, Y., Kambara, H., Mori, Y., Abe, T., Moriishi, K., and Matsuura, Y. (2010). Involvement of ceramide in the propagation of Japanese encephalitis virus. J. Virol. 84, 2798–2807.10.1128/JVI.02499-09Suche in Google Scholar PubMed PubMed Central

Tanner, L.B., Chng, C., Guan, X.L., Lei, Z., Rozen, S.G., and Wenk, M.R. (2014). Lipidomics identifies a requirement for peroxisomal function during influenza virus replication. J. Lipid Res. 55, 1357–1365.10.1194/jlr.M049148Suche in Google Scholar PubMed PubMed Central

Utermohlen, O., Herz, J., Schramm, M., and Kronke, M. (2008). Fusogenicity of membranes: the impact of acid sphingomyelinase on innate immune responses. Immunobiology 213, 307–314.10.1016/j.imbio.2007.10.016Suche in Google Scholar PubMed

Vieira, C.R., Munoz-Olaya, J.M., Sot, J., Jimenez-Baranda, S., Izquierdo-Useros, N., Abad, J.L., Apellaniz, B., Delgado, R., Martinez-Picado, J., Alonso, A., et al. (2010). Dihydrosphingomyelin impairs HIV-1 infection by rigidifying liquid-ordered membrane domains. Chem Biol 17, 766–775.10.1016/j.chembiol.2010.05.023Suche in Google Scholar PubMed

Vijayan, M. and Hahm, B. (2014). Influenza viral manipulation of sphingolipid metabolism and signaling to modulate host defense system. Scientifica (Cairo) 2014, 793815.10.1155/2014/793815Suche in Google Scholar PubMed PubMed Central

Vijayan, M., Seo, Y.J., Pritzl, C.J., Squires, S.A., Alexander, S., and Hahm, B. (2014). Sphingosine kinase 1 regulates measles virus replication. Virology 450–451, 55–63.10.1016/j.virol.2013.11.039Suche in Google Scholar PubMed PubMed Central

Voisset, C., Lavie, M., Helle, F., Op De Beeck, A., Bilheu, A., Bertrand-Michel, J., Terce, F., Cocquerel, L., Wychowski, C., Vu-Dac, N., et al. (2008). Ceramide enrichment of the plasma membrane induces CD81 internalization and inhibits hepatitis C virus entry. Cell Microbiol. 10, 606–617.10.1111/j.1462-5822.2007.01070.xSuche in Google Scholar PubMed

Walsh, K.B., Marsolais, D., Welch, M.J., Rosen, H., and Oldstone, M.B. (2010). Treatment with a sphingosine analog does not alter the outcome of a persistent virus infection. Virology 397, 260–269.10.1016/j.virol.2009.08.043Suche in Google Scholar PubMed PubMed Central

Walsh, K.B., Teijaro, J.R., Wilker, P.R., Jatzek, A., Fremgen, D.M., Das, S.C., Watanabe, T., Hatta, M., Shinya, K., Suresh, M., et al. (2011). Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proc. Natl. Acad. Sci. USA 108, 12018–12023.10.1073/pnas.1107024108Suche in Google Scholar PubMed PubMed Central

Yamane, D., Zahoor, M.A., Mohamed, Y.M., Azab, W., Kato, K., Tohya, Y., and Akashi, H. (2009). Inhibition of sphingosine kinase by bovine viral diarrhea virus NS3 is crucial for efficient viral replication and cytopathogenesis. J. Biol. Chem. 284, 13648–13659.10.1074/jbc.M807498200Suche in Google Scholar PubMed PubMed Central

Yu, H., Alfsen, A., Tudor, D., and Bomsel, M. (2008). The binding of HIV-1 gp41 membrane proximal domain to its mucosal receptor, galactosyl ceramide, is structure-dependent. Cell Calcium 43, 73–82.10.1016/j.ceca.2007.04.011Suche in Google Scholar PubMed

Zeidan, Y.H., Jenkins, R.W., and Hannun, Y.A. (2008). Remodeling of cellular cytoskeleton by the acid sphingomyelinase/ceramide pathway. J. Cell. Biol. 181, 335–350.10.1083/jcb.200705060Suche in Google Scholar PubMed PubMed Central

Zha, X., Pierini, L.M., Leopold, P.L., Skiba, P.J., Tabas, I., and Maxfield, F.R. (1998). Sphingomyelinase treatment induces ATP-independent endocytosis. J. Cell. Biol. 140, 39–47.10.1083/jcb.140.1.39Suche in Google Scholar PubMed PubMed Central

Received: 2014-11-17
Accepted: 2014-12-12
Published Online: 2015-1-20
Published in Print: 2015-6-1

©2015 by De Gruyter

Artikel in diesem Heft

  1. Frontmatter
  2. Guest Editorial
  3. Highlight: Molecular Medicine of Sphingolipids
  4. HIGHLIGHT: MOLECULAR MEDICINE OF SPHINGOLIPIDS
  5. The role of serum amyloid A and sphingosine-1-phosphate on high-density lipoprotein functionality
  6. Sphingolipids in viral infection
  7. Tackling the biophysical properties of sphingolipids to decipher their biological roles
  8. Ceramide and sphingosine in pulmonary infections
  9. Molecular mechanisms of erythrocyte aging
  10. Sphingolipids in liver injury, repair and regeneration
  11. Ultrasound-stimulated microbubble enhancement of radiation response
  12. Innate immune responses in the brain of sphingolipid lysosomal storage diseases
  13. Novel mechanisms of action of classical chemotherapeutic agents on sphingolipid pathways
  14. The role of sphingolipids in endothelial barrier function
  15. The effect of altered sphingolipid acyl chain length on various disease models
  16. Secretory sphingomyelinase in health and disease
  17. Preclinical development of a C6-ceramide NanoLiposome, a novel sphingolipid therapeutic
  18. Sphingomyelin breakdown in T cells: role in activation, effector functions and immunoregulation
  19. The molecular medicine of acid ceramidase
  20. Caenorhabditis elegans as a model to study sphingolipid signaling
  21. S1PR4 is required for plasmacytoid dendritic cell differentiation
  22. Antinociceptive effects of FTY720 during trauma-induced neuropathic pain are mediated by spinal S1P receptors
  23. Subcellular distribution of FTY720 and FTY720-phosphate in immune cells – another aspect of Fingolimod action relevant for therapeutic application
  24. Downregulation of sphingosine 1-phosphate (S1P) receptor 1 by dexamethasone inhibits S1P-induced mesangial cell migration
  25. Sphingosine kinase 2 deficiency increases proliferation and migration of renal mouse mesangial cells and fibroblasts
  26. Obituary
  27. The life and work of Dr. Robert Bittman (1942–2014)
Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2014-0273/html
Button zum nach oben scrollen