Abstract
Cancer therapies result in the killing of cancer cells but remain largely ineffective, with most patients dying of their disease. The methodology described here is a new image-guided cancer treatment under development that relies on physical methods to alter tumour biology. It enhances tumour responses to radiation significantly by synergistically destroying tumour blood vessels using microbubbles. It achieves tumour specificity by confining the ultrasonic fields that stimulate microbubbles to tumour location only. By perturbing tumour vasculature and activating specific genetic pathways in endothelial cells, the technique has been demonstrated to sensitise the targeted tissues to subsequent therapeutic application of radiation, resulting in significantly enhanced cell killing through a ceramide-dependent pathway initiated at the cell membrane. The treatment reviewed here destroys blood vessels, significantly enhancing the anti-vascular effect of radiation and improving tumour cure. The significant enhancement of localised tumour cell kill observed with this method means that radiation-based treatments can be potentially made more potent and lower doses of radiation utilised. The technique has the potential to have a profound impact on the practice of radiation oncology by offering a novel and safe means of reducing normal tissue toxicity while at the same time significantly increasing treatment effectiveness.
Acknowledgments
G.J.C. is a recipient of a James and Mary Davie Research Chair in Breast Cancer Imaging and Ablation Research from the University of Toronto.
References
Al-Mahrouki, A.A., Karshafian, R., Giles, A., and Czarnota, G.J. (2012). Bioeffects of ultrasound-stimulated microbubbles on endothelial cells: gene expression changes associated with radiation enhancement in vitro. Ultrasound Med. Biol. 38, 1958–1969.10.1016/j.ultrasmedbio.2012.07.009Suche in Google Scholar PubMed
Al-Mahrouki, A.A., Iradji, S., Tran, W.T., and Czarnota, G.J. (2014). Cellular characterization of ultrasound-stimulated microbubble radiation enhancement in a prostate cancer xenograft model. Dis. Model Mech. 7, 363–372.Suche in Google Scholar
Banihashemi, B., Vlad, R., Debeljevic, B., Giles, A., Kolios, M.C., and Czarnota, G.J. (2008). Ultrasound imaging of apoptosis in tumour response: novel preclinical monitoring of photodynamic therapy effects. Cancer Res. 68, 8590–8596.10.1158/0008-5472.CAN-08-0006Suche in Google Scholar PubMed
Briggs, K., Al-Mahrouki, A., Nofiele, J., El-Falou, A., Stanisz, M., Kim, H.C., Kolios, M.C., and Czarnota, G.J. (2014). Non-invasive monitoring of ultrasound-stimulated microbubble radiation enhancement using photoacoustic imaging. Technol. Cancer Res. Treat. 13, 435–444.Suche in Google Scholar
Caissie, A., Karshafian, R., Hynynen, K., and Czarnota, G.J. (2010). Ultrasound Contrast Microbubbles: In Vivo Imaging and Potential Therapeutic Applications. In: NanoImaging. B. Goins and W.T. Phillips, eds. (Chicago, USA: Pan Stanford Publishing), pp. 267–292.Suche in Google Scholar
Cerussi, A.E., Tanamai, V.W., Mehta, R.S., Hsiang, D., Butler, J., and Tromberg, B.J. (2010). Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumour physiology in an individual patient. Acad. Radiol. 17, 1031–1039.10.1016/j.acra.2010.05.002Suche in Google Scholar PubMed PubMed Central
Cosgrove, D. (2006). Ultrasound contrast agents: an overview. Eur. J. Radiol. 60, 324–330.10.1016/j.ejrad.2006.06.022Suche in Google Scholar PubMed
Czarnota, G.J. and Kolios, M.C. (2010). Ultrasound detection of cell death. Imaging Med. 2, 17–28.10.2217/iim.09.34Suche in Google Scholar
Czarnota, G.J., Karshafian, R., Burns, P.N., Wong, C.S., Al-Mahrouki, A., Lee, J., Caissie, A., Tran, W., Kim, C., Furukawa, M., et al. (2012a). Tumour radiation response enhancement by acoustical stimulation of the vasculature. Proc. Natl. Acad. Sci. USA 109, E2033-41.10.1073/pnas.1200053109Suche in Google Scholar PubMed PubMed Central
Czarnota, G.J., Karshafian, R., Burns, P.N., Wong, C.S., Al-Mahrouki, A., Lee, J., Caissie, A., Tran, W., Kim, C., Furukawa, M., et al. (2012b). Tumour radiation response enhancement by acoustical stimulation of the vasculature. Proc. Natl. Acad. Sci. USA Plus 109, 11904–11905.10.1073/pnas.1200053109Suche in Google Scholar
Deng, X., Yin, X., Allan, R., Lu, D.D., Maurer, C.W., Haimovitz-Friedman, A., Fuks, Z., Shaham, S., and Kolesnick, R. (2008). Ceramide biogenesis is required for radiation-induced apoptosis in the germ line of C. elegans. Science 322, 110–115.10.1126/science.1158111Suche in Google Scholar PubMed PubMed Central
Garcia-Barros, M., Paris, F., Cordon-Cardo, C., Lyden, D., Rafii, S., Haimovtz-Friedman, A., Fuks, Z., and Kolesnick, R. (2003). Tumour response to radiotherapy regulated by endothelial cell apoptosis. Science 300, 1155–1159.10.1126/science.1082504Suche in Google Scholar PubMed
Garcia-Barros, M., Lacorazza, D., Petrie, H., Haimovitz-Friedman, A., Cardon-Cardo, C., Nimer, S., Fuks, Z., and Kolesnick, R. (2004). Host acid sphingomyelinase regulates microvascular function not tumour immunity. Cancer Res. 64, 8285–8291.10.1158/0008-5472.CAN-04-2715Suche in Google Scholar PubMed
Folkman, J. and Camphausen, K. (2001). What does radiotherapy do to endothelial cells? Science 293, 227–228.10.1126/science.1062892Suche in Google Scholar PubMed
Foster, F.S., Burns, P.N., Simpson, D.H., Wilson, S.R., Christopher, D.A., and Goertz, D.E. (2000). Ultrasound for the visualization and quantification of tumour microcirculation. Cancer Metastasis Rev. 19, 131.10.1023/A:1026541510549Suche in Google Scholar
Goertz, D.E., Needles, A., Burns, P.N., and Foster, F.S. (2005a). High-frequency, nonlinear flow imaging of microbubble contrast agents. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 495.10.1109/TUFFC.2005.1417273Suche in Google Scholar PubMed
Goertz, D.E., Cherin, E., Needle, A., Karshafian, R., Brown, A.S., Burns, P.N., and Foster, F.S. (2005b). High frequency nonlinear B-scan imaging of microbubble contrast agents. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 65.10.1109/TUFFC.2005.1397351Suche in Google Scholar
Haag, P., Frauscher, F., Gradl, J., Seitz, A., Schafer, G., Lindner, J.R., Klibanov, A.L., Bartsch, G., Klocker, H., and Eder, I.E. (2006). Microbubble-enhanced ultrasound to deliver an antisense oligodeoxynucleotide targeting the human androgen receptor into prostate tumours. J. Steroid Biochem. Mol. Biol. 102, 103–113.10.1016/j.jsbmb.2006.09.027Suche in Google Scholar PubMed
Hall, E.J. (2000). Radiobiology for the Radiobiologist (Philadelphia, PA: Lippincott, Williams and Wilkins).Suche in Google Scholar
El Kaffas, A., Tran, W., and Czarnota, G.J. (2012). Vascular strategies for enhancing tumour response to radiation therapy. Technol. Cancer Res. Treat. 11, 421–432. 2012.10.7785/tcrt.2012.500265Suche in Google Scholar PubMed
El Kaffas, A., Giles, A., and Czarnota, G.J. (2013). Dose-dependent response of tumour vasculature to radiation therapy in combination with Sunitinib depicted by three-dimensional high-frequency power Doppler ultrasound. Angiogenesis 16, 443–454. 2013.10.1007/s10456-012-9329-2Suche in Google Scholar PubMed
El Kaffas, A., Nofiele, J., Giles, A., Cho, S., Liu, S.K., and Czarnota, G.J. (2014). Dll4-notch signalling blockade synergizes combined ultrasound-stimulated microbubble and radiation therapy in human colon cancer xenografts. PLoS One 9, e93888.10.1371/journal.pone.0093888Suche in Google Scholar PubMed PubMed Central
Falou, O., Soliman, H., Sadeghi-Naini, A., Iradji, S., Lemon-Wong, S., Zubovits, J., Spayne, J., Dent, R., Trudeau, M., Boileau, J.F., et al. (2012). Diffuse optical spectroscopy evaluation of treatment response in women with locally advanced breast cancer receiving neoadjuvant chemotherapy. Trans. Oncol. 5, 238–346.10.1593/tlo.11346Suche in Google Scholar PubMed PubMed Central
Karshafian, R., Bevan, P.D., Williams, R., Samac, S., and Burns, P.N. (2009). Sonoporation by ultrasound-activated microbubble contrast agents: effect of acoustic exposure parameters on cell membrane permeability and cell viability. Ultrasound Med. Biol. 35, 847–860.10.1016/j.ultrasmedbio.2008.10.013Suche in Google Scholar PubMed
Karshafian, R., Samac, S., Bevan, P.D., and Burns, P.N. (2010). Microbubble mediated sonoporation of cells in suspension: clonogenic viability and influence of molecular size on uptake. Ultrasonics 50, 691–697.10.1016/j.ultras.2010.01.009Suche in Google Scholar PubMed
Kim, H.C., Al-Mahrouki, A., Gorjizadeh, A., Karshafian, R., and Czarnota, G.J. (2013). Effects of biophysical parameters in enhancing radiation responses of prostate tumours with ultrasound-stimulated microbubbles. Ultrasound Med. Biol. 39, 1376–1387.10.1016/j.ultrasmedbio.2013.01.012Suche in Google Scholar PubMed
Kolesnick, R. (2002). The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin. Invest. 110, 3–8.10.1172/JCI0216127Suche in Google Scholar
Kolesnick, R. and Fuks, Z. (2003). Radiation and ceramide-induced apoptosis. Oncogene 22, 5897–5906.10.1038/sj.onc.1206702Suche in Google Scholar PubMed
Kwok, S., El Kaffas, A., Al-Mahrouki, A., Lee, J., Lai, P., Iradji, S., Giles, A., and Czarnota, G.J. (2012). Ultrasound-mediated microbubble enhancement of radiation therapy studied using three-dimensional high-frequency power doppler ultrasound. Ultrasound Med. Biol. 39, 1983–1990.10.1016/j.ultrasmedbio.2013.03.025Suche in Google Scholar PubMed
Lee, H., Rotolo, J.A., Mesicek, J., Penate-Medina, T., Rimner, A., Liao, W.C., Yin, X., Ragupathi, G., Ehleiter, D., Gulbins, E., et al. (2011). Mitochondrial Ceramide-Rich Macrodomains Functionalize Bax upon Irradiation. PLoS One 6, e19783.10.1371/journal.pone.0019783Suche in Google Scholar PubMed PubMed Central
Lee, J., Karshafian, R., Papanicolau, N., Giles, A., Kolios, M.C., and Czarnota, G.J. (2012). Quantitative ultrasound for the monitoring of novel microbubble and ultrasound radiosensitization. Ultrasound Med. Biol. 38, 1212–1221.10.1016/j.ultrasmedbio.2012.01.028Suche in Google Scholar PubMed
Nofiele, J.T., Karshafian, R., Furukawa, M., Al-Mahrouki, A., Giles, A., Wong, S., and Czarnota, G.J. (2013). Ultrasound-activated microbubble cancer therapy: ceramide production leading to enhanced radiation effect in vitro. Technol Cancer Res. Treat. 12, 53–60.10.7785/tcrt.2012.500253Suche in Google Scholar PubMed PubMed Central
Oladipupo, S., Hu, S., Kovalski, J., Yao, J., Santeford, A., Sohn, R.E., Shohet, R., Maslov, K., Wang, L.V., and Arbeit, J.M. (2011). VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting. Proc. Natl. Acad. Sci. USA 108, 13264–13269.10.1073/pnas.1101321108Suche in Google Scholar PubMed PubMed Central
Palmowski, M., Huppert, J., Hauff, P., Reinhardt, M., Schreiner, K., Socher, M.A., Hallscheidt, P., Kauffmann, G.W., Semmler, W., and Kiessling, F. (2008). Vessel fractions in tumour xenografts depicted by flow- or contrast-sensitive three-dimensional high-frequency Doppler ultrasound respond differently to antiangiogenic treatment. Cancer Res. 68, 7042–7049.10.1158/0008-5472.CAN-08-0285Suche in Google Scholar PubMed
Pena, L., Fuks, Z., and Kolesnick, R. (2000). Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res. 60, 321.Suche in Google Scholar
Razansky, D., Distel, M., Vinegoni, C., Ma, R., Perrimon, N., Koster, R.W., and Ntziachristos, V. (2009). Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat. Photonics 3, 412–417.10.1038/nphoton.2009.98Suche in Google Scholar
Roblyer, D., Ueda, S., Cerussi, A., Tanamai, W., Durkin, A., Mehta, R., Hsiang, D., Butler, J.I., McLaren, C., Chen, W.P., et al. (2011). Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment. Proc. Natl. Acad. Sci. USA 108, 14626–14631.10.1073/pnas.1013103108Suche in Google Scholar PubMed PubMed Central
Sadeghi-Naini, A., Falou, O., Hudson, J.M., Bailey, C., Burns, P.N., Yaffe, M.J., Stanisz, G.J., Kolios, M.C., and Czarnota, G.J. (2012). Imaging innovations for cancer therapy response monitoring. Imaging Med. 4, 311–327.10.2217/iim.12.23Suche in Google Scholar
Sadeghi-Naini, A., Falou, O., Tadayyon, H., Al-Mahrouki, A., Tran, W., Papanicolau, N., Kolios, M.C., and Czarnota, G.J. (2013a). Conventional frequency ultrasonic biomarkers of cancer treatment response in vivo. Transl. Oncol. 6, 234–243.10.1593/tlo.12385Suche in Google Scholar PubMed PubMed Central
Sadeghi-Naini, A., Papanicolau, N., Falou, O., Tadayyon, H., Lee, J., Zubovits, J., Sadeghian, A., Karshafian, R., Al-Mahrouki, A., Giles, A., et al. (2013b). Low-frequency quantitative ultrasound imaging of cell death in vivo. Med. Phys. 40, 082901.10.1118/1.4812683Suche in Google Scholar PubMed
Saha, R.K. and Kolios, M.C. (2011). Effects of erythrocyte oxygenation on optoacoustic signals. J. Biomed. Opt. 16, 115003.10.1117/1.3655355Suche in Google Scholar PubMed
Sannachi, L., Tadayyon, H., Sadeghi-Naini, A., Kolios, M.C., and Czarnota, G.J. (2014). Personalization of breast cancer chemotherapy using noninvasive imaging methods to detect tumour cell death responses. Breast Cancer Management 3, 31–35.10.2217/bmt.13.58Suche in Google Scholar
Sathishkumar, S., Boyanovsky, B., Karakashian, A.A., Rozenova, K., Giltiay, N.V., Kudrimoti, M., Mohiuddin, M., Ahmed, M.M., and Nikolova-Karakshian, M. (2005). Elevated sphingomyelinase activity and ceramide concentration in serum of patients undergoing high dose spatially fractionated radiation treatment. Cancer Biol. Ther. 4, 979–986.10.4161/cbt.4.9.1915Suche in Google Scholar PubMed
Simpson, D.H., Burns, P.N., and Averkiou, M.A. (2001). Techniques for perfusion imaging with microbubble contrast agents. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1483–1494.10.1109/58.971698Suche in Google Scholar PubMed
Stein, E.W., Maslov, K., and Wang, L.V. (2009). Noninvasive, in vivo imaging of the mouse brain using photoacoustic microscopy. J. Appl. Phy. 105, 102027.10.1063/1.3116134Suche in Google Scholar PubMed PubMed Central
Tran, W.T., Iradji, S., Sofroni, E., Giles, A., Eddy, D., and Czarnota, G.J. (2012). Microbubble and ultrasound radioenhancement of bladder cancer. Br. J. Cancer. 107, 469–746.10.1038/bjc.2012.279Suche in Google Scholar PubMed PubMed Central
Wang, X., Xie, X., Ku, G., Wang, L.V., and Stoica, G. (2006). Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. J. Biomed. Opt. 11, 024015.10.1117/1.2192804Suche in Google Scholar PubMed
Yao, J. and Wang, L.V. (2011). Photoacoustic tomography: fundamentals, advances and prospects. Contrast Media Mol. Imaging. 6, 332–345.10.1002/cmmi.443Suche in Google Scholar PubMed PubMed Central
Yao, J., Maslov, K.I., Zhang, Y., Xia, Y., and Wang, L.V. (2011). Label-free oxygen-metabolic photoacoustic microscopy in vivo. J. Biomed. Opt. 16, 076003.10.1117/1.3594786Suche in Google Scholar PubMed PubMed Central
©2015 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Guest Editorial
- Highlight: Molecular Medicine of Sphingolipids
- HIGHLIGHT: MOLECULAR MEDICINE OF SPHINGOLIPIDS
- The role of serum amyloid A and sphingosine-1-phosphate on high-density lipoprotein functionality
- Sphingolipids in viral infection
- Tackling the biophysical properties of sphingolipids to decipher their biological roles
- Ceramide and sphingosine in pulmonary infections
- Molecular mechanisms of erythrocyte aging
- Sphingolipids in liver injury, repair and regeneration
- Ultrasound-stimulated microbubble enhancement of radiation response
- Innate immune responses in the brain of sphingolipid lysosomal storage diseases
- Novel mechanisms of action of classical chemotherapeutic agents on sphingolipid pathways
- The role of sphingolipids in endothelial barrier function
- The effect of altered sphingolipid acyl chain length on various disease models
- Secretory sphingomyelinase in health and disease
- Preclinical development of a C6-ceramide NanoLiposome, a novel sphingolipid therapeutic
- Sphingomyelin breakdown in T cells: role in activation, effector functions and immunoregulation
- The molecular medicine of acid ceramidase
- Caenorhabditis elegans as a model to study sphingolipid signaling
- S1PR4 is required for plasmacytoid dendritic cell differentiation
- Antinociceptive effects of FTY720 during trauma-induced neuropathic pain are mediated by spinal S1P receptors
- Subcellular distribution of FTY720 and FTY720-phosphate in immune cells – another aspect of Fingolimod action relevant for therapeutic application
- Downregulation of sphingosine 1-phosphate (S1P) receptor 1 by dexamethasone inhibits S1P-induced mesangial cell migration
- Sphingosine kinase 2 deficiency increases proliferation and migration of renal mouse mesangial cells and fibroblasts
- Obituary
- The life and work of Dr. Robert Bittman (1942–2014)
Artikel in diesem Heft
- Frontmatter
- Guest Editorial
- Highlight: Molecular Medicine of Sphingolipids
- HIGHLIGHT: MOLECULAR MEDICINE OF SPHINGOLIPIDS
- The role of serum amyloid A and sphingosine-1-phosphate on high-density lipoprotein functionality
- Sphingolipids in viral infection
- Tackling the biophysical properties of sphingolipids to decipher their biological roles
- Ceramide and sphingosine in pulmonary infections
- Molecular mechanisms of erythrocyte aging
- Sphingolipids in liver injury, repair and regeneration
- Ultrasound-stimulated microbubble enhancement of radiation response
- Innate immune responses in the brain of sphingolipid lysosomal storage diseases
- Novel mechanisms of action of classical chemotherapeutic agents on sphingolipid pathways
- The role of sphingolipids in endothelial barrier function
- The effect of altered sphingolipid acyl chain length on various disease models
- Secretory sphingomyelinase in health and disease
- Preclinical development of a C6-ceramide NanoLiposome, a novel sphingolipid therapeutic
- Sphingomyelin breakdown in T cells: role in activation, effector functions and immunoregulation
- The molecular medicine of acid ceramidase
- Caenorhabditis elegans as a model to study sphingolipid signaling
- S1PR4 is required for plasmacytoid dendritic cell differentiation
- Antinociceptive effects of FTY720 during trauma-induced neuropathic pain are mediated by spinal S1P receptors
- Subcellular distribution of FTY720 and FTY720-phosphate in immune cells – another aspect of Fingolimod action relevant for therapeutic application
- Downregulation of sphingosine 1-phosphate (S1P) receptor 1 by dexamethasone inhibits S1P-induced mesangial cell migration
- Sphingosine kinase 2 deficiency increases proliferation and migration of renal mouse mesangial cells and fibroblasts
- Obituary
- The life and work of Dr. Robert Bittman (1942–2014)