Abstract
Host T cell activation, a key step in obtaining adaptive immunity against pathogens, is initiated by the binding of the T cell receptor to a foreign antigenic peptide presented by the major histocompatibility complex on the surface of an antigen-presenting cell and, consequently, formation of an immunological synapse. Within the immunological synapse, the engagement of the T cell receptor in cooperation with simultaneous ligation of co-stimulatory molecules induces a precisely organized cascade of signaling events and pathways that regulate clonal expansion and differentiation of naïve T cells into effector T cells contributing to pathogen clearance. The biochemical changes that underlie T cell activation and differentiation, however, not only involve proteins but also lipids. In particular, catabolic cleavage of sphingomyelin generating ceramide can substantially influence functional responses in cells of the immune system. Changes in sphingomyelin and ceramide content have been reported to directly impact on membrane physiology, thus modifying signal transmission and interfering with diverse aspects of T cell activity. In this review we will focus on sphingomyelin breakdown/ceramide generation in T cells with regard to their function and development of T cell-mediated immunity.
Acknowledgments
We thank Th. Kerkau, S. Schneider-Schaulies, J. Schneider-Schaulies and E. Avota for helpful discussions and critical reading of this manuscript and the Research Unit 2123 of the Deutsche Forschungsgemeinschaft for financial support.
References
Abboushi, N., El-Hed, A., El-Assaad, W., Kozhaya, L., El-Sabban, M.E., Bazarbachi, A., Badreddine, R., Bielawska, A., Usta, J., and Dbaibo, G.S. (2004). Ceramide inhibits IL-2 production by preventing protein kinase C-dependent NF-kB activation: possible role in protein kinase C theta regulation. J. Immunol. 173, 3193–3200.10.4049/jimmunol.173.5.3193Suche in Google Scholar PubMed
Adada, M., Canals, D., Hannun, Y.A., and Obeid, L.M. (2014). Sphingolipid regulation of ezrin, radixin, and moesin proteins family: implications for cell dynamics. Biochim. Biophys. Acta. 1841, 727–737.10.1016/j.bbalip.2013.07.002Suche in Google Scholar PubMed PubMed Central
Airola, M.V. and Hannun, Y.A. (2013). Sphingolipid metabolism and neutral sphingomyelinases. Handb. Exp. Pharmacol. 215, 57–76.10.1007/978-3-7091-1368-4_3Suche in Google Scholar PubMed PubMed Central
Avota, E. and Schneider-Schaulies, S. (2014). The role of sphingomyelin breakdown in measles virus immunmodulation. Cell. Physiol. Biochem. 34, 20–26.10.1159/000362981Suche in Google Scholar PubMed
Bai, A., Moss, A., Kokkotou, E., Usheva, A., Sun, X., Cheifetz, A., Zheng, Y., Longhi, M.S., Gao, W., Wu, Y., et al. (2014). CD39 and CD161 modulate Th17 responses in Crohn’s disease. J. Immunol. 193, 3366–3377.10.4049/jimmunol.1400346Suche in Google Scholar PubMed PubMed Central
Balagopalan, L., Sherman, E., Barr, V.A., and Samelson, L.E. (2011). Imaging techniques for assaying lymphocyte activation in action. Nat. Rev. Immunol. 11, 21–33.10.1038/nri2903Suche in Google Scholar PubMed PubMed Central
Becker, C., Bopp, T., and Jonuleit, H. (2012). Boosting regulatory T cell function by CD4 stimulation enters the clinic. Front. Immunol. 3, 164.10.3389/fimmu.2012.00164Suche in Google Scholar PubMed PubMed Central
Becker, K.A., Gellhaus, A., Winterhager, E., and Gulbins, E. (2008). Ceramide-enriched membrane domains in infectious biology and development. Subcell. Biochem. 49, 523–538.10.1007/978-1-4020-8831-5_20Suche in Google Scholar PubMed
Beemiller, P., Jacobelli, J., and Krummel, M.F. (2012). Integration of the movement of signaling microclusters with cellular motility in immunological synapses. Nat. Immunol. 13, 787–795.10.1038/ni.2364Suche in Google Scholar PubMed PubMed Central
Bollinger, C.R., Teichgraber, V., and Gulbins, E. (2005). Ceramide-enriched membrane domains. Biochim. Biophys. Acta. 1746, 284–294.10.1016/j.bbamcr.2005.09.001Suche in Google Scholar PubMed
Boucher, L.M., Wiegmann, K., Futterer, A., Pfeffer, K., Machleidt, T., Schutze, S., Mak, T.W., and Kronke, M. (1995). CD28 signals through acidic sphingomyelinase. J. Exp. Med. 181, 2059–2068.10.1084/jem.181.6.2059Suche in Google Scholar PubMed PubMed Central
Burkhardt, J.K., Carrizosa, E., and Shaffer, M.H. (2008). The actin cytoskeleton in T cell activation. Ann. Rev. Immunol. 26, 233–259.10.1146/annurev.immunol.26.021607.090347Suche in Google Scholar PubMed
Camara, M., Beyersdorf, N., Fischer, H.J., Herold, M.J., Ip, C.W., van den Brandt, J., Toyka, K.V., Taurog, J.D., Hunig, T., Herrmann, T., et al. (2013). CD8+ T cell help is required for efficient induction of EAE in Lewis rats. J. Neuroimmunol. 260, 17–27.10.1016/j.jneuroim.2013.04.014Suche in Google Scholar PubMed
Castro, B.M., Prieto, M., and Silva, L.C. (2014). Ceramide: a simple sphingolipid with unique biophysical properties. Prog. Lipid Res. 54, 53–67.10.1016/j.plipres.2014.01.004Suche in Google Scholar PubMed
Chen, L. and Flies, D.B. (2013). Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13, 227–242.10.1038/nri3405Suche in Google Scholar PubMed PubMed Central
Chentouf, M., Ghannam, S., Bes, C., Troadec, S., Cerutti, M., and Chardes, T. (2007). Recombinant anti-CD4 antibody 13B8.2 blocks membrane-proximal events by excluding the Zap70 molecule and downstream targets SLP-76, PLC gamma 1, and Vav-1 from the CD4-segregated Brij 98 detergent-resistant raft domains. J. Immunol. 179, 409–420.10.4049/jimmunol.179.1.409Suche in Google Scholar PubMed
Chentouf, M., Rigo, M., Ghannam, S., Navarro-Teulon, I., Mongrand, S., Pelegrin, A., and Chardes, T. (2010). The lipid-modulating effects of a CD4-specific recombinant antibody correlate with ZAP-70 segregation outside membrane rafts. Immunol. Lett. 133, 62–69.10.1016/j.imlet.2010.07.003Suche in Google Scholar PubMed
Chopra, M., Riedel, S.S., Biehl, M., Krieger, S., von Krosigk, V., Bauerlein, C.A., Brede, C., Jordan Garrote, A.L., Kraus, S., Schafer, V., et al. (2013). Tumor necrosis factor receptor 2-dependent homeostasis of regulatory T cells as a player in TNF-induced experimental metastasis. Carcinogenesis 34, 1296–1303.10.1093/carcin/bgt038Suche in Google Scholar PubMed
Church, L.D., Hessler, G., Goodall, J.E., Rider, D.A., Workman, C.J., Vignali, D.A., Bacon, P.A., Gulbins, E., and Young, S.P. (2005). TNFR1-induced sphingomyelinase activation modulates TCR signaling by impairing store-operated Ca2+ influx. J. Leukoc. Biol. 78, 266–278.10.1189/jlb.1003456Suche in Google Scholar PubMed
Constantin, G. and Laudanna, C. (2012). Transmigration of effector T lymphocytes: changing the rules. Nat. Immunol. 13, 15–16.10.1038/ni.2188Suche in Google Scholar PubMed
Dustin, M.L. (2008). Hunter to gatherer and back: immunological synapses and kinapses as variations on the theme of amoeboid locomotion. Ann. Rev. Cell Dev. Biol. 24, 577–596.10.1146/annurev.cellbio.24.110707.175226Suche in Google Scholar
Dustin, M.L., Chakraborty, A.K., and Shaw, A.S. (2010). Understanding the structure and function of the immunological synapse. Cold Spring Harb. Perspect. Biol. 2, a002311.10.1101/cshperspect.a002311Suche in Google Scholar
Finnegan, C.M., Rawat, S.S., Cho, E.H., Guiffre, D.L., Lockett, S., Merrill, A.H. Jr., and Blumenthal, R. (2007). Sphingomyelinase restricts the lateral diffusion of CD4 and inhibits human immunodeficiency virus fusion. J. Virol. 81, 5294–5304.10.1128/JVI.02553-06Suche in Google Scholar
Friedl, P., den Boer, A.T., and Gunzer, M. (2005). Tuning immune responses: diversity and adaptation of the immunological synapse. Nat. Rev. Immunol. 5, 532–545.10.1038/nri1647Suche in Google Scholar
Gassert, E., Avota, E., Harms, H., Krohne, G., Gulbins, E., and Schneider-Schaulies, S. (2009). Induction of membrane ceramides: a novel strategy to interfere with T lymphocyte cytoskeletal reorganisation in viral immunosuppression. PLoS Pathogens 5, e1000623.10.1371/journal.ppat.1000623Suche in Google Scholar
Gaus, K., Chklovskaia, E., Fazekas de St Groth, B., Jessup, W., and Harder, T. (2005). Condensation of the plasma membrane at the site of T lymphocyte activation. J. Cell Biol. 171, 121–131.10.1083/jcb.200505047Suche in Google Scholar
Gogishvili, T., Luhder, F., Goebbels, S., Beer-Hammer, S., Pfeffer, K., and Hunig, T. (2013). Cell-intrinsic and -extrinsic control of Treg-cell homeostasis and function revealed by induced CD28 deletion. European J. Immunol. 43, 188–193.10.1002/eji.201242824Suche in Google Scholar
Gomez, T.S. and Billadeau, D. D. (2008). T cell activation and the cytoskeleton: you can’t have one without the other. Adv. Immunol. 97, 1–64.10.1016/S0065-2776(08)00001-1Suche in Google Scholar
Grassme, H., Cremesti, A., Kolesnick, R., and Gulbins, E. (2003). Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22, 5457–5470.10.1038/sj.onc.1206540Suche in Google Scholar
Gulbins, E. (2003). Regulation of death receptor signaling and apoptosis by ceramide. Pharmacol. Res. 47, 393–399.10.1016/S1043-6618(03)00052-5Suche in Google Scholar
Hailman, E., Burack, W.R., Shaw, A.S., Dustin, M.L., and Allen, P.M. (2002). Immature CD4+ CD8+ thymocytes form a multifocal immunological synapse with sustained tyrosine phosphorylation. Immunity 16, 839–848.10.1016/S1074-7613(02)00326-6Suche in Google Scholar
Hannun, Y.A. and Obeid, L.M. (2008). Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev.Mol. Cell Biol. 9, 139–150.10.1038/nrm2329Suche in Google Scholar
Herz, J., Pardo, J., Kashkar, H., Schramm, M., Kuzmenkina, E., Bos, E., Wiegmann, K., Wallich, R., Peters, P.J., Herzig, S., et al. (2009). Acid sphingomyelinase is a key regulator of cytotoxic granule secretion by primary T lymphocytes. Nat. Immunol. 10, 761–768.10.1038/ni.1757Suche in Google Scholar
Huber, M., Heink, S., Pagenstecher, A., Reinhard, K., Ritter, J., Visekruna, A., Guralnik, A., Bollig, N., Jeltsch, K., Heinemann, C., et al. (2013). IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis. J. Clin. Invest. 123, 247–260.10.1172/JCI63681Suche in Google Scholar
Hueber, A.O. (2000). CD95: more than just a death factor? Nat. Cell Biol. 2, E23–E25.10.1038/35000092Suche in Google Scholar
Hunig, T. (2007). Manipulation of regulatory T-cell number and function with CD28-specific monoclonal antibodies. Adv. Immunol. 95, 111–148.10.1016/S0065-2776(07)95004-XSuche in Google Scholar
Jameson, S.C. and Masopust, D. (2009). Diversity in T cell memory: an embarrassment of riches. Immunity 31, 859–871.10.1016/j.immuni.2009.11.007Suche in Google Scholar
Kirschnek, S., Paris, F., Weller, M., Grassme, H., Ferlinz, K., Riehle, A., Fuks, Z., Kolesnick, R., and Gulbins, E. (2000). CD95-mediated apoptosis in vivo involves acid sphingomyelinase. J. Biol. Chem. 275, 27316–27323.10.1016/S0021-9258(19)61513-9Suche in Google Scholar
Kumari, S., Curado, S., Mayya, V., and Dustin, M.L. (2014). T cell antigen receptor activation and actin cytoskeleton remodeling. Biochim. Biophys. Acta. 1838, 546–556.10.1016/j.bbamem.2013.05.004Suche in Google Scholar PubMed PubMed Central
Lafouresse, F., Vasconcelos, Z., Cotta-de-Almeida, V., and Dupre, L. (2013). Actin cytoskeleton control of the comings and goings of T lymphocytes. Tissue Antigens 82, 301–311.10.1111/tan.12193Suche in Google Scholar PubMed
Lepple-Wienhues, A., Belka, C., Laun, T., Jekle, A., Walter, B., Wieland, U., Welz, M., Heil, L., Kun, J., Busch, G., et al. (1999). Stimulation of CD95 (Fas) blocks T lymphocyte calcium channels through sphingomyelinase and sphingolipids. Proc. Natl. Acad. Sci. USA 96, 13795–13800.10.1073/pnas.96.24.13795Suche in Google Scholar PubMed PubMed Central
Levine, A.G., Arvey, A., Jin, W., and Rudensky, A.Y. (2014). Continuous requirement for the TCR in regulatory T cell function. Nat. Immunol. 15, 1070–1078.10.1038/ni.3004Suche in Google Scholar PubMed PubMed Central
Libregts, S.F. and Nolte, M.A. (2014). Parallels between immune driven-hematopoiesis and T cell activation: 3 signals that relay inflammatory stress to the bone marrow. Exp. Cell Res. 329, 239–247.10.1016/j.yexcr.2014.09.016Suche in Google Scholar PubMed
Malek, T.R. and Bayer, A.L. (2004). Tolerance, not immunity, crucially depends on IL-2. Nat. Rev. Immunol. 4, 665–674.10.1038/nri1435Suche in Google Scholar PubMed
Malissen, B., Gregoire, C., Malissen, M., and Roncagalli, R. (2014). Integrative biology of T cell activation. Nat. Immunol. 15, 790–797.10.1038/ni.2959Suche in Google Scholar PubMed
Martin-Cofreces, N.B., Baixauli, F., and Sanchez-Madrid, F. (2014). Immune synapse: conductor of orchestrated organelle movement. Trends Cell Biol. 24, 61–72.10.1016/j.tcb.2013.09.005Suche in Google Scholar PubMed PubMed Central
McKinstry, K.K., Strutt, T.M., and Swain, S.L. (2010). Regulation of CD4+ T-cell contraction during pathogen challenge. Immunol. Rev. 236, 110–124.10.1111/j.1600-065X.2010.00921.xSuche in Google Scholar PubMed PubMed Central
Mintern, J.D., Macri, C., and Villadangos, J.A. (2015). Modulation of antigen presentation by intracellular trafficking. Curr. Opin. Immunol. 34c, 16–21.10.1016/j.coi.2014.12.006Suche in Google Scholar PubMed
Molano, A., Huang, Z., Marko, M.G., Azzi, A., Wu, D., Wang, E., Kelly, S.L., Merrill, A.H. Jr., Bunnell, S.C., and Meydani, S.N. (2012). Age-dependent changes in the sphingolipid composition of mouse CD4+ T cell membranes and immune synapses implicate glucosylceramides in age-related T cell dysfunction. PLoS One 7, e47650.10.1371/journal.pone.0047650Suche in Google Scholar PubMed PubMed Central
Morikawa, H. and Sakaguchi, S. (2014). Genetic and epigenetic basis of Treg cell development and function: from a FoxP3-centered view to an epigenome-defined view of natural Treg cells. Immunol. Rev. 259, 192–205.10.1111/imr.12174Suche in Google Scholar PubMed
Mueller, N., Avota, E., Collenburg, L., Grassmé, H., Schneider-Schaulies, S. (2014). Neutral sphingomyelinase in physiological and measles virus induced T cell suppression. PLoS Pathogens 10, e1004574.10.1371/journal.ppat.1004574Suche in Google Scholar
Okoye, I.S., Coomes, S.M., Pelly, V.S., Czieso, S., Papayannopoulos, V., Tolmachova, T., Seabra, M.C., and Wilson, M.S. (2014). MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 41, 89–103.10.1016/j.immuni.2014.05.019Suche in Google Scholar
Owen, D.M., Oddos, S., Kumar, S., Davis, D.M., Neil, M.A., French, P.M., Dustin, M.L., Magee, A.I., and Cebecauer, M. (2010). High plasma membrane lipid order imaged at the immunological synapse periphery in live T cells. Mol. Membr. Biol. 27, 178–189.10.3109/09687688.2010.495353Suche in Google Scholar
Perrotta, C., Bizzozero, L., Cazzato, D., Morlacchi, S., Assi, E., Simbari, F., Zhang, Y., Gulbins, E., Bassi, M.T., Rosa, P., et al. (2010). Syntaxin 4 is required for acid sphingomyelinase activity and apoptotic function. J. Biol. Chem. 285, 40240–40251.10.1074/jbc.M110.139287Suche in Google Scholar
Saito, T., Yokosuka, T., and Hashimoto-Tane, A. (2010). Dynamic regulation of T cell activation and co-stimulation through TCR-microclusters. FEBS Lett. 584, 4865–4871.10.1016/j.febslet.2010.11.036Suche in Google Scholar
Schneider-Schaulies, S., Müller, N., Gulbins, E. (2014). Membrane Mircodomains Enriched in Ceramides: From Generation to Function. In: Cell Membrane Nanodomains: From Biochemistry to Nanoscopy, A. Cambi and D.S. Lidke, eds. (Boca Raton, FL, USA: CRC Press), pp. 133–172.Suche in Google Scholar
Seddon, B. and Mason, D. (2000). The third function of the thymus. Immunol. Today 21, 95–99.10.1016/S0167-5699(99)01559-5Suche in Google Scholar
Shen, S., Ding, Y., Tadokoro, C.E., Olivares-Villagomez, D., Camps-Ramirez, M., Curotto de Lafaille, M.A., and Lafaille, J.J. (2005). Control of homeostatic proliferation by regulatory T cells. J. Clin. Invest. 115, 3517–3526.10.1172/JCI25463Suche in Google Scholar
Sherman, E., Barr, V., Samelson, L.E. (2013). Super-resolution characterization of TCR-dependent signaling clusters. Immunol. Rev. 251, 21–35.10.1111/imr.12010Suche in Google Scholar
Simarro, M., Calvo, J., Vila, J.M., Places, L., Padilla, O., Alberola-Ila, J., Vives, J., and Lozano, F. (1999). Signaling through CD5 involves acidic sphingomyelinase, protein kinase C-z, mitogen-activated protein kinase kinase, and c-Jun NH2-terminal kinase. J. Immunol. 162, 5149–5155.10.4049/jimmunol.162.9.5149Suche in Google Scholar
Stoffel, B., Bauer, P., Nix, M., Deres, K., and Stoffel, W. (1998). Ceramide-independent CD28 and TCR signaling but reduced IL-2 secretion in T cells of acid sphingomyelinase-deficient mice. Eur. J. Immunol. 28, 874–880.10.1002/(SICI)1521-4141(199803)28:03<874::AID-IMMU874>3.0.CO;2-TSuche in Google Scholar
Strutt, T.M., McKinstry, K.K., Marshall, N.B., Vong, A.M., Dutton, R.W., and Swain, S.L. (2013). Multipronged CD4+ T-cell effector and memory responses cooperate to provide potent immunity against respiratory virus. Immunol. Rev. 255, 149–164.10.1111/imr.12088Suche in Google Scholar
Thauland, T.J. and Parker, D.C. (2010). Diversity in immunological synapse structure. Immunology 131, 466–472.10.1111/j.1365-2567.2010.03366.xSuche in Google Scholar PubMed PubMed Central
Thauland, T.J., Koguchi, Y., Dustin, M.L., and Parker, D.C. (2014). CD28–CD80 interactions control regulatory T cell motility and immunological synapse formation. J. Immunol. 193, 5894–5903.10.4049/jimmunol.1401752Suche in Google Scholar PubMed PubMed Central
Tischner, D., Theiss, J., Karabinskaya, A., van den Brandt, J., Reichardt, S.D., Karow, U., Herold, M.J., Luhder, F., Utermohlen, O., and Reichardt, H.M. (2011). Acid sphingomyelinase is required for protection of effector memory T cells against glucocorticoid-induced cell death. J. Immunol. 187, 4509–4516.10.4049/jimmunol.1100911Suche in Google Scholar PubMed
Tonnetti, L., Veri, M.C., Bonvini, E., and D’Adamio, L. (1999). A role for neutral sphingomyelinase-mediated ceramide production in T cell receptor-induced apoptosis and mitogen-activated protein kinase-mediated signal transduction. J. Exp. Med. 189, 1581–1589.10.1084/jem.189.10.1581Suche in Google Scholar PubMed PubMed Central
Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brugger, B., and Simons, M. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247.10.1126/science.1153124Suche in Google Scholar PubMed
Tskvitaria-Fuller, I., Rozelle, A.L., Yin, H.L., and Wulfing, C. (2003). Regulation of sustained actin dynamics by the TCR and costimulation as a mechanism of receptor localization. J. Immunol. 171, 2287–2295.10.4049/jimmunol.171.5.2287Suche in Google Scholar PubMed
van Blitterswijk, W.J., van der Luit, A.H., Veldman, R.J., Verheij, M., and Borst, J. (2003). Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem. J. 369, 199–211.10.1042/bj20021528Suche in Google Scholar
Wong, P., Barton, G.M., Forbush, K.A., and Rudensky, A.Y. (2001). Dynamic tuning of T cell reactivity by self-peptide-major histocompatibility complex ligands. J. Exp. Med. 193, 1179–1187.10.1084/jem.193.10.1179Suche in Google Scholar PubMed PubMed Central
Wu, B.X., Clarke, C.J., and Hannun, Y.A. (2010). Mammalian neutral sphingomyelinases: regulation and roles in cell signaling responses. Neuromolecular Med. 12, 320–330.10.1007/s12017-010-8120-zSuche in Google Scholar PubMed PubMed Central
Yabu, T., Shiba, H., Shibasaki, Y., Nakanishi, T., Imamura, S., Touhata, K., and Yamashita, M. (2015). Stress-induced ceramide generation and apoptosis via the phosphorylation and activation of nSMase1 by JNK signaling. Cell Death Differ. 22, 258–273.10.1038/cdd.2014.128Suche in Google Scholar PubMed PubMed Central
Yamamoto, S., Tsuji, T., Matsuzaki, J., Zhange, Y., Chamoto, K., Kosaka, A., Togashi, Y., Sekikawa, K., Sawada, K., Takeshima, T., et al. (2004). Unexpected role of TNF-alpha in graft versus host reaction (GVHR): donor-derived TNF-a suppresses GVHR via inhibition of IFN-g-dependent donor type-1 immunity. Int. Immunol. 16, 811–817.10.1093/intimm/dxh082Suche in Google Scholar PubMed
Yokosuka, T., and Saito, T. (2010). The immunological synapse, TCR microclusters, and T cell activation. Curr. Top. Microbiol. Immunol. 340, 81–107.10.1007/978-3-642-03858-7_5Suche in Google Scholar PubMed
Zech, T., Ejsing, C.S., Gaus, K., de Wet, B., Shevchenko, A., Simons, K., and Harder, T. (2009). Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. EMBO J. 28, 466–476.10.1038/emboj.2009.6Suche in Google Scholar PubMed PubMed Central
Zhang, Y., Li, X., Becker, K. A., and Gulbins, E. (2009). Ceramide-enriched membrane domains-structure and function. Biochim. Biophys. Acta. 1788, 178–183.10.1016/j.bbamem.2008.07.030Suche in Google Scholar PubMed
©2015 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Guest Editorial
- Highlight: Molecular Medicine of Sphingolipids
- HIGHLIGHT: MOLECULAR MEDICINE OF SPHINGOLIPIDS
- The role of serum amyloid A and sphingosine-1-phosphate on high-density lipoprotein functionality
- Sphingolipids in viral infection
- Tackling the biophysical properties of sphingolipids to decipher their biological roles
- Ceramide and sphingosine in pulmonary infections
- Molecular mechanisms of erythrocyte aging
- Sphingolipids in liver injury, repair and regeneration
- Ultrasound-stimulated microbubble enhancement of radiation response
- Innate immune responses in the brain of sphingolipid lysosomal storage diseases
- Novel mechanisms of action of classical chemotherapeutic agents on sphingolipid pathways
- The role of sphingolipids in endothelial barrier function
- The effect of altered sphingolipid acyl chain length on various disease models
- Secretory sphingomyelinase in health and disease
- Preclinical development of a C6-ceramide NanoLiposome, a novel sphingolipid therapeutic
- Sphingomyelin breakdown in T cells: role in activation, effector functions and immunoregulation
- The molecular medicine of acid ceramidase
- Caenorhabditis elegans as a model to study sphingolipid signaling
- S1PR4 is required for plasmacytoid dendritic cell differentiation
- Antinociceptive effects of FTY720 during trauma-induced neuropathic pain are mediated by spinal S1P receptors
- Subcellular distribution of FTY720 and FTY720-phosphate in immune cells – another aspect of Fingolimod action relevant for therapeutic application
- Downregulation of sphingosine 1-phosphate (S1P) receptor 1 by dexamethasone inhibits S1P-induced mesangial cell migration
- Sphingosine kinase 2 deficiency increases proliferation and migration of renal mouse mesangial cells and fibroblasts
- Obituary
- The life and work of Dr. Robert Bittman (1942–2014)
Artikel in diesem Heft
- Frontmatter
- Guest Editorial
- Highlight: Molecular Medicine of Sphingolipids
- HIGHLIGHT: MOLECULAR MEDICINE OF SPHINGOLIPIDS
- The role of serum amyloid A and sphingosine-1-phosphate on high-density lipoprotein functionality
- Sphingolipids in viral infection
- Tackling the biophysical properties of sphingolipids to decipher their biological roles
- Ceramide and sphingosine in pulmonary infections
- Molecular mechanisms of erythrocyte aging
- Sphingolipids in liver injury, repair and regeneration
- Ultrasound-stimulated microbubble enhancement of radiation response
- Innate immune responses in the brain of sphingolipid lysosomal storage diseases
- Novel mechanisms of action of classical chemotherapeutic agents on sphingolipid pathways
- The role of sphingolipids in endothelial barrier function
- The effect of altered sphingolipid acyl chain length on various disease models
- Secretory sphingomyelinase in health and disease
- Preclinical development of a C6-ceramide NanoLiposome, a novel sphingolipid therapeutic
- Sphingomyelin breakdown in T cells: role in activation, effector functions and immunoregulation
- The molecular medicine of acid ceramidase
- Caenorhabditis elegans as a model to study sphingolipid signaling
- S1PR4 is required for plasmacytoid dendritic cell differentiation
- Antinociceptive effects of FTY720 during trauma-induced neuropathic pain are mediated by spinal S1P receptors
- Subcellular distribution of FTY720 and FTY720-phosphate in immune cells – another aspect of Fingolimod action relevant for therapeutic application
- Downregulation of sphingosine 1-phosphate (S1P) receptor 1 by dexamethasone inhibits S1P-induced mesangial cell migration
- Sphingosine kinase 2 deficiency increases proliferation and migration of renal mouse mesangial cells and fibroblasts
- Obituary
- The life and work of Dr. Robert Bittman (1942–2014)