Startseite The effect of altered sphingolipid acyl chain length on various disease models
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The effect of altered sphingolipid acyl chain length on various disease models

  • Woo-Jae Park und Joo-Won Park EMAIL logo
Veröffentlicht/Copyright: 24. Januar 2015

Abstract

Sphingolipids have emerged as an important lipid mediator in intracellular signalling and metabolism. Ceramide, which is central to sphingolipid metabolism, is generated either via a de novo pathway, by attaching fatty acyl CoA to a long-chain base, or via a salvage pathway, by degrading pre-existing sphingolipids. As a ‘sphingolipid rheostat’ has been proposed, the balance between ceramide and sphingosine-1-phosphate has been the object of considerable attention. Ceramide has recently been reported to have a different function depending on its acyl chain length: six ceramide synthases (CerS) determine the specific ceramide acyl chain length in mammals. All CerS-deficient mice generated to date show that sphingolipids with defined acyl chain lengths play distinct pathophysiological roles in disease models. This review describes recent advances in understanding the associations of CerS with various diseases and includes clinical case reports.


Corresponding author: Joo-Won Park, Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 158-710, South Korea, e-mail:

Acknowledgments

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2013K2A1A2053119, NRF-2013R1A1A1057912, NRF-2013R1A1A1076013).

References

Abe, K., Ohno, Y., Sassa, T., Taguchi, R., Caliskan, M., Ober, C., and Kihara, A. (2013). Mutation for nonsyndromic mental retardation in the trans-2-enoyl-CoA reductase TER gene involved in fatty acid elongation impairs the enzyme activity and stability, leading to change in sphingolipid profile. J. Biol. Chem. 288, 36741–36749.10.1074/jbc.M113.493221Suche in Google Scholar

Ali, M., Fritsch, J., Zigdon, H., Pewzner-Jung, Y., Schutze, S., and Futerman, A.H. (2013). Altering the sphingolipid acyl chain composition prevents LPS/GLN-mediated hepatic failure in mice by disrupting TNFR1 internalization. Cell Death Dis. 4, e929.10.1038/cddis.2013.451Suche in Google Scholar

Aronova, S., Wedaman, K., Aronov, P.A., Fontes, K., Ramos, K., Hammock, B.D., and Powers, T. (2008). Regulation of ceramide biosynthesis by TOR complex 2. Cell Metab. 7, 148–158.10.1016/j.cmet.2007.11.015Suche in Google Scholar

Becker, I., Wang-Eckhardt, L., Yaghootfam, A., Gieselmann, V., and Eckhardt, M. (2008). Differential expression of (dihydro)ceramide synthases in mouse brain: oligodendrocyte-specific expression of CerS2/Lass2. Histochem. Cell Biol. 129, 233–241.10.1007/s00418-007-0344-0Suche in Google Scholar

Ben-David, O., Pewzner-Jung, Y., Brenner, O., Laviad, E.L., Kogot-Levin, A., Weissberg, I., Biton, I.E., Pienik, R., Wang, E., Kelly, S., et al. (2011). Encephalopathy caused by ablation of very long acyl chain ceramide synthesis may be largely due to reduced galactosylceramide levels. J. Biol. Chem. 286, 30022–30033.10.1074/jbc.M111.261206Suche in Google Scholar

Blank, N., Schiller, M., Krienke, S., Wabnitz, G., Ho, A.D., and Lorenz, H.M. (2007). Cholera toxin binds to lipid rafts but has a limited specificity for ganglioside GM1. Immunol. Cell Biol. 85, 378–382.10.1038/sj.icb.7100045Suche in Google Scholar

Blumenfeld, H.J., Tohn, R., Haeryfar, S.M., Liu, Y., Savage, P.B., and Delovitch, T.L. (2011). Structure-guided design of an invariant natural killer T cell agonist for optimum protection from type 1 diabetes in non-obese diabetic mice. Clin. Exp. Immunol. 166, 121–133.10.1111/j.1365-2249.2011.04454.xSuche in Google Scholar

Cinar, R., Godlewski, G., Liu, J., Tam, J., Jourdan, T., Mukhopadhyay, B., Harvey-White, J., and Kunos, G. (2014). Hepatic cannabinoid-1 receptors mediate diet-induced insulin resistance by increasing de novo synthesis of long-chain ceramides. Hepatology 59, 143–153.10.1002/hep.26606Suche in Google Scholar

Coetzee, T., Fujita, N., Dupree, J., Shi, R., Blight, A., Suzuki, K., and Popko, B. (1996). Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86, 209–219.10.1016/S0092-8674(00)80093-8Suche in Google Scholar

de Jong, S., Timmer, T., Heijenbrok, F.J., and de Vries, E.G. (2001). Death receptor ligands, in particular TRAIL, to overcome drug resistance. Cancer Metastasis Rev. 20, 51–56.10.1023/A:1013112624971Suche in Google Scholar

Dewson, G. and Kluck, R.M. (2009). Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. J. Cell Sci. 122, 2801–2808.10.1242/jcs.038166Suche in Google Scholar PubMed PubMed Central

Ebel, P., Vom Dorp, K., Petrasch-Parwez, E., Zlomuzica, A., Kinugawa, K., Mariani, J., Minich, D., Ginkel, C., Welcker, J., Degen, J., et al. (2013). Inactivation of ceramide synthase 6 in mice results in an altered sphingolipid metabolism and behavioral abnormalities. J. Biol. Chem. 288, 21433–21447.10.1074/jbc.M113.479907Suche in Google Scholar PubMed PubMed Central

Ebel, P., Imgrund, S., Vom Dorp, K., Hofmann, K., Maier, H., Drake, H., Degen, J., Dormann, P., Eckhardt, M., Franz, T., et al. (2014). Ceramide synthase 4 deficiency in mice causes lipid alterations in sebum and results in alopecia. Biochem. J. 461, 147–158.10.1042/BJ20131242Suche in Google Scholar PubMed

Eberle, M., Ebel, P., Wegner, M.S., Mannich, J., Tafferner, N., Ferreiros, N., Birod, K., Schreiber, Y., Krishnamoorthy, G., Willecke, K., et al. (2014). Regulation of ceramide synthase 6 in a spontaneous experimental autoimmune encephalomyelitis model is sex dependent. Biochem. Pharmacol. 92, 326–335.10.1016/j.bcp.2014.08.016Suche in Google Scholar PubMed

Eckl, K.M., Tidhar, R., Thiele, H., Oji, V., Hausser, I., Brodesser, S., Preil, M.L., Onal-Akan, A., Stock, F., Muller, D., et al. (2013). Impaired epidermal ceramide synthesis causes autosomal recessive congenital ichthyosis and reveals the importance of ceramide acyl chain length. J. Invest. Dermatol. 133, 2202–2011.10.1038/jid.2013.153Suche in Google Scholar PubMed

Erez-Roman, R., Pienik, R., and Futerman, A.H. (2010). Increased ceramide synthase 2 and 6 mRNA levels in breast cancer tissues and correlation with sphingosine kinase expression. Biochem. Biophys. Res. Commun. 391, 219–223.10.1016/j.bbrc.2009.11.035Suche in Google Scholar PubMed

Fan, S., Niu, Y., Tan, N., Wu, Z., Wang, Y., You, H., Ke, R., Song, J., Shen, Q., Wang, W., et al. (2013). LASS2 enhances chemosensitivity of breast cancer by counteracting acidic tumor microenvironment through inhibiting activity of V-ATPase proton pump. Oncogene 32, 1682–1690.10.1038/onc.2012.183Suche in Google Scholar PubMed

Fan, S.H., Wang, Y.Y., Lu, J., Zheng, Y.L., Wu, D.M., Zhang, Z.F., Shan, Q., Hu, B., Li, M.Q., and Cheng, W. (2015). CERS2 suppresses tumor cell invasion and is associated with decreased V-ATPase and MMP-2/MMP-9 activities in breast cancer. J. Cell. Biochem. 116, 502–513.10.1002/jcb.24978Suche in Google Scholar PubMed

Fox, L.M., Cox, D.G., Lockridge, J.L., Wang, X., Chen, X., Scharf, L., Trott, D.L., Ndonye, R.M., Veerapen, N., Besra, G.S., et al. (2009). Recognition of lyso-phospholipids by human natural killer T lymphocytes. PLoS Biol. 7, e1000228.10.1371/journal.pbio.1000228Suche in Google Scholar PubMed PubMed Central

Fox, T.E., Bewley, M.C., Unrath, K.A., Pedersen, M.M., Anderson, R.E., Jung, D.Y., Jefferson, L.S., Kim, J.K., Bronson, S.K., Flanagan, J.M., et al. (2011). Circulating sphingolipid biomarkers in models of type 1 diabetes. J. Lipid Res. 52, 509–517.10.1194/jlr.M010595Suche in Google Scholar PubMed PubMed Central

Fresques, T., Niles, B., Aronova, S., Mogri, H., Rakhshandehroo, T., and Powers, T. (2014). Regulation of ceramide synthase by casein kinase 2-dependent phosphorylation in S. cerevisiae. J. Biol. Chem. Nov 26. pii: jbc.M114.621086. [Epub ahead of print].Suche in Google Scholar

Ginkel, C., Hartmann, D., vom Dorp, K., Zlomuzica, A., Farwanah, H., Eckhardt, M., Sandhoff, R., Degen, J., Rabionet, M., Dere, E., et al. (2012). Ablation of neuronal ceramide synthase 1 in mice decreases ganglioside levels and expression of myelin-associated glycoprotein in oligodendrocytes. J. Biol. Chem. 287, 41888–41902.10.1074/jbc.M112.413500Suche in Google Scholar PubMed PubMed Central

Hartmann, D., Lucks, J., Fuchs, S., Schiffmann, S., Schreiber, Y., Ferreiros, N., Merkens, J., Marschalek, R., Geisslinger, G., and Grosch, S. (2012). Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. Int. J. Biochem. Cell. Biol. 44, 620–628.10.1016/j.biocel.2011.12.019Suche in Google Scholar PubMed

Imgrund, S., Hartmann, D., Farwanah, H., Eckhardt, M., Sandhoff, R., Degen, J., Gieselmann, V., Sandhoff, K., and Willecke, K. (2009). Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas. J. Biol. Chem. 284, 33549–33560.10.1074/jbc.M109.031971Suche in Google Scholar PubMed PubMed Central

Imokawa, G., Abe, A., Jin, K., Higaki, Y., Kawashima, M., and Hidano, A. (1991). Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J. Invest. Dermatol. 96, 523–526.10.1111/1523-1747.ep12470233Suche in Google Scholar PubMed

Jennemann, R., Rabionet, M., Gorgas, K., Epstein, S., Dalpke, A., Rothermel, U., Bayerle, A., van der Hoeven, F., Imgrund, S., Kirsch, J., et al. (2012). Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum. Mol. Genet. 21, 586–608.10.1093/hmg/ddr494Suche in Google Scholar PubMed

Jensen, S.A., Calvert, A.E., Volpert, G., Kouri, F.M., Hurley, L.A., Luciano, J.P., Wu, Y., Chalastanis, A., Futerman, A.H., and Stegh, A.H. (2014). Bcl2L13 is a ceramide synthase inhibitor in glioblastoma. Proc. Natl. Acad. Sci. USA 111, 5682–5687.10.1073/pnas.1316700111Suche in Google Scholar PubMed PubMed Central

Jorizzo, J.L., Atherton, D.J., Crounse, R.G., and Wells, R.S. (1982). Ichthyosis, brittle hair, impaired intelligence, decreased fertility and short stature (IBIDS syndrome). Br. J. Dermatol. 106, 705–710.10.1111/j.1365-2133.1982.tb11687.xSuche in Google Scholar PubMed

Kageyama-Yahara, N., and Riezman, H. (2006). Transmembrane topology of ceramide synthase in yeast. Biochem. J. 398, 585–593.10.1042/BJ20060697Suche in Google Scholar PubMed PubMed Central

Karahatay, S., Thomas, K., Koybasi, S., Senkal, C.E., Elojeimy, S., Liu, X., Bielawski, J., Day, T.A., Gillespie, M.B., Sinha, D., et al. (2007). Clinical relevance of ceramide metabolism in the pathogenesis of human head and neck squamous cell carcinoma (HNSCC): attenuation of C(18)-ceramide in HNSCC tumors correlates with lymphovascular invasion and nodal metastasis. Cancer Lett. 256, 101–111.10.1016/j.canlet.2007.06.003Suche in Google Scholar PubMed PubMed Central

Kirin, M., Chandra, A., Charteris, D.G., Hayward, C., Campbell, S., Celap, I., Bencic, G., Vatavuk, Z., Kirac, I., Richards, A.J., et al. (2013). Genome-wide association study identifies genetic risk underlying primary rhegmatogenous retinal detachment. Hum. Mol. Genet. 22, 3174–3185.10.1093/hmg/ddt169Suche in Google Scholar PubMed

Koch, M., Stronge, V.S., Shepherd, D., Gadola, S.D., Mathew, B., Ritter, G., Fersht, A.R., Besra, G.S., Schmidt, R.R., Jones, E.Y., et al. (2005). The crystal structure of human CD1d with and without alpha-galactosylceramide. Nat. Immunol. 6, 819–826.10.1038/ni1225Suche in Google Scholar PubMed

Kremser, C., Klemm, A.L., van Uelft, M., Imgrund, S., Ginkel, C., Hartmann, D., and Willecke, K. (2013). Cell-type-specific expression pattern of ceramide synthase 2 protein in mouse tissues. Histochem. Cell Biol. 140, 533–547.10.1007/s00418-013-1091-zSuche in Google Scholar PubMed

Lahiri, S., and Futerman, A.H. (2005). LASS5 is a bona fide dihydroceramide synthase that selectively utilizes palmitoyl-CoA as acyl donor. J. Biol. Chem. 280, 33735–33738.10.1074/jbc.M506485200Suche in Google Scholar PubMed

Laviad, E.L., Albee, L., Pankova-Kholmyansky, I., Epstein, S., Park, H., Merrill, A.H., Jr., and Futerman, A.H. (2008). Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J. Biol. Chem. 283, 5677–5684.10.1074/jbc.M707386200Suche in Google Scholar PubMed

Laviad, E.L., Kelly, S., Merrill, A.H., Jr., and Futerman, A.H. (2012). Modulation of ceramide synthase activity via dimerization. J. Biol. Chem. 287, 21025–21033.10.1074/jbc.M112.363580Suche in Google Scholar PubMed PubMed Central

Lee, P.T., Putnam, A., Benlagha, K., Teyton, L., Gottlieb, P.A., and Bendelac, A. (2002). Testing the NKT cell hypothesis of human IDDM pathogenesis. J. Clin. Invest. 110, 793–800.10.1172/JCI0215832Suche in Google Scholar

Lee, H., Rotolo, J.A., Mesicek, J., Penate-Medina, T., Rimner, A., Liao, W.C., Yin, X., Ragupathi, G., Ehleiter, D., Gulbins, E., et al. (2011). Mitochondrial ceramide-rich macrodomains functionalize Bax upon irradiation. PLoS One 6, e19783.10.1371/journal.pone.0019783Suche in Google Scholar PubMed PubMed Central

Lemaitre, R.N., King, I.B., Kabagambe, E.K., Wu, J.H., McKnight, B., Manichaikul, A., Guan, W., Sun, Q., Chasman, D.I., Foy, M., et al. (2015). Genetic loci associated with circulating levels of very long-chain saturated fatty acids. J. Lipid Res. 56, 176–184.10.1194/jlr.M052456Suche in Google Scholar PubMed PubMed Central

Levy, M. and Futerman, A.H. (2010). Mammalian ceramide synthases. IUBMB Life 62, 347–356.10.1002/iub.319Suche in Google Scholar PubMed PubMed Central

Li, X., Fujio, M., Imamura, M., Wu, D., Vasan, S., Wong, C.H., Ho, D.D., and Tsuji, M. (2010). Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc. Natl. Acad. Sci. USA 107, 13010–13015.10.1073/pnas.1006662107Suche in Google Scholar PubMed PubMed Central

Lindsten, T., Ross, A.J., King, A., Zong, W.X., Rathmell, J.C., Shiels, H.A., Ulrich, E., Waymire, K.G., Mahar, P., Frauwirth, K., et al. (2000). The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389–1399.10.1016/S1097-2765(00)00136-2Suche in Google Scholar

Liu, Y.Y., Han, T.Y., Giuliano, A.E., and Cabot, M.C. (1999). Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells. J. Biol. Chem. 274, 1140–1146.10.1074/jbc.274.2.1140Suche in Google Scholar PubMed

McCarthy, C., Shepherd, D., Fleire, S., Stronge, V.S., Koch, M., Illarionov, P.A., Bossi, G., Salio, M., Denkberg, G., Reddington, F., et al. (2007). The length of lipids bound to human CD1d molecules modulates the affinity of NKT cell TCR and the threshold of NKT cell activation. J. Exp. Med. 204, 1131–1144.10.1084/jem.20062342Suche in Google Scholar PubMed PubMed Central

Mesicek, J., Lee, H., Feldman, T., Jiang, X., Skobeleva, A., Berdyshev, E.V., Haimovitz-Friedman, A., Fuks, Z., and Kolesnick, R. (2010). Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. Cell Signal. 22, 1300–1307.10.1016/j.cellsig.2010.04.006Suche in Google Scholar PubMed PubMed Central

Mesika, A., Ben-Dor, S., Laviad, E.L., and Futerman, A.H. (2007). A new functional motif in Hox domain-containing ceramide synthases: identification of a novel region flanking the Hox and TLC domains essential for activity. J. Biol. Chem. 282, 27366–27373.10.1074/jbc.M703487200Suche in Google Scholar PubMed

Mizutani, Y., Kihara, A., and Igarashi, Y. (2005). Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem. J. 390, 263–271.10.1042/BJ20050291Suche in Google Scholar PubMed PubMed Central

Mizutani, Y., Kihara, A., and Igarashi, Y. (2006). LASS3 (longevity assurance homologue 3) is a mainly testis-specific (dihydro)ceramide synthase with relatively broad substrate specificity. Biochem. J. 398, 531–538.10.1042/BJ20060379Suche in Google Scholar PubMed PubMed Central

Mosbech, M.B., Olsen, A.S., Neess, D., Ben-David, O., Klitten, L.L., Larsen, J., Sabers, A., Vissing, J., Nielsen, J.E., Hasholt, L., et al. (2014). Reduced ceramide synthase 2 activity causes progressive myoclonic epilepsy. Ann. Clin. Transl. Neurol. 1, 88–98.10.1002/acn3.28Suche in Google Scholar PubMed PubMed Central

Muir, A., Ramachandran, S., Roelants, F.M., Timmons, G., and Thorner, J. (2014). TORC2-dependent protein kinase Ypk1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids. Elife 3, doi: 10.7554/eLife.03779.10.7554/eLife.03779Suche in Google Scholar PubMed PubMed Central

Mullen, T.D., Spassieva, S., Jenkins, R.W., Kitatani, K., Bielawski, J., Hannun, Y.A., and Obeid, L.M. (2011). Selective knockdown of ceramide synthases reveals complex interregulation of sphingolipid metabolism. J. Lipid Res. 52, 68–77.10.1194/jlr.M009142Suche in Google Scholar PubMed PubMed Central

Pappas, A. (2009). Epidermal surface lipids. Dermatoendocrinol 1, 72–76.10.4161/derm.1.2.7811Suche in Google Scholar PubMed PubMed Central

Park, J.W. and Pewzner-Jung, Y. (2013). Ceramide synthases: reexamining longevity. Handb. Exp. Pharmacol. 215, 89–107.10.1007/978-3-7091-1368-4_5Suche in Google Scholar PubMed

Park, J.W., Park, W.J., Kuperman, Y., Boura-Halfon, S., Pewzner-Jung, Y., and Futerman, A.H. (2013a). Ablation of very long acyl chain sphingolipids causes hepatic insulin resistance in mice due to altered detergent-resistant membranes. Hepatology 57, 525–532.10.1002/hep.26015Suche in Google Scholar PubMed

Park, W.J., Park, J.W., Erez-Roman, R., Kogot-Levin, A., Bame, J.R., Tirosh, B., Saada, A., Merrill, A.H., Jr., Pewzner-Jung, Y., and Futerman, A.H. (2013b). Protection of a ceramide synthase 2 null mouse from drug-induced liver injury: role of gap junction dysfunction and connexin 32 mislocalization. J. Biol. Chem. 288, 30904–30916.10.1074/jbc.M112.448852Suche in Google Scholar PubMed PubMed Central

Park, J.W., Park, W.J., and Futerman, A.H. (2014a). Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim. Biophys. Acta 1841, 671–681.10.1016/j.bbalip.2013.08.019Suche in Google Scholar PubMed

Park, W.J., Park, J.W., Merrill, A.H., Jr., Storch, J., Pewzner-Jung, Y., and Futerman, A.H. (2014b). Hepatic fatty acid uptake is regulated by the sphingolipid acyl chain length. Biochim. Biophys. Acta 1841, 1754–1766.10.1016/j.bbalip.2014.09.009Suche in Google Scholar PubMed PubMed Central

Patel, S.J., Milwid, J.M., King, K.R., Bohr, S., Iracheta-Velle, A., Li, M., Vitalo, A., Parekkadan, B., Jindal, R., and Yarmush, M.L. (2012). Gap junction inhibition prevents drug-induced liver toxicity and fulminant hepatic failure. Nat. Biotechnol. 30, 179–183.10.1038/nbt.2089Suche in Google Scholar PubMed PubMed Central

Petrache, I., Kamocki, K., Poirier, C., Pewzner-Jung, Y., Laviad, E.L., Schweitzer, K.S., Van Demark, M., Justice, M.J., Hubbard, W.C., and Futerman, A.H. (2013). Ceramide synthases expression and role of ceramide synthase-2 in the lung: insight from human lung cells and mouse models. PLoS One 8, e62968.10.1371/journal.pone.0062968Suche in Google Scholar PubMed PubMed Central

Pewzner-Jung, Y., Brenner, O., Braun, S., Laviad, E.L., Ben-Dor, S., Feldmesser, E., Horn-Saban, S., Amann-Zalcenstein, D., Raanan, C., Berkutzki, T., et al. (2010a). A critical role for ceramide synthase 2 in liver homeostasis: II. Insights into molecular changes leading to hepatopathy. J. Biol. Chem. 285, 10911–10923.10.1074/jbc.M109.077610Suche in Google Scholar PubMed PubMed Central

Pewzner-Jung, Y., Park, H., Laviad, E.L., Silva, L.C., Lahiri, S., Stiban, J., Erez-Roman, R., Brugger, B., Sachsenheimer, T., Wieland, F., et al. (2010b). A critical role for ceramide synthase 2 in liver homeostasis: I. alterations in lipid metabolic pathways. J. Biol. Chem. 285, 10902–10910.10.1074/jbc.M109.077594Suche in Google Scholar PubMed PubMed Central

Pewzner-Jung, Y., Tavakoli Tabazavareh, S., Grassme, H., Becker, K.A., Japtok, L., Steinmann, J., Joseph, T., Lang, S., Tuemmler, B., Schuchman, E.H., et al. (2014). Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa. EMBO Mol. Med. 6, 1205–1214.10.15252/emmm.201404075Suche in Google Scholar PubMed PubMed Central

Rabionet, M., van der Spoel, A.C., Chuang, C.C., von Tumpling-Radosta, B., Litjens, M., Bouwmeester, D., Hellbusch, C.C., Korner, C., Wiegandt, H., Gorgas, K., et al. (2008). Male germ cells require polyenoic sphingolipids with complex glycosylation for completion of meiosis: a link to ceramide synthase-3. J. Biol. Chem. 283, 13357–13369.10.1074/jbc.M800870200Suche in Google Scholar PubMed PubMed Central

Radner, F.P., Marrakchi, S., Kirchmeier, P., Kim, G.J., Ribierre, F., Kamoun, B., Abid, L., Leipoldt, M., Turki, H., Schempp, W., et al. (2013). Mutations in CERS3 cause autosomal recessive congenital ichthyosis in humans. PLoS Genet. 9, e1003536.10.1371/journal.pgen.1003536Suche in Google Scholar PubMed PubMed Central

Raichur, S., Wang, S.T., Chan, P.W., Li, Y., Ching, J., Chaurasia, B., Dogra, S., Ohman, M.K., Takeda, K., Sugii, S., et al. (2014). CerS2 haploinsufficiency inhibits b-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab. 20, 687–695.10.1016/j.cmet.2014.09.015Suche in Google Scholar PubMed

Riebeling, C., Allegood, J.C., Wang, E., Merrill, A.H., Jr., and Futerman, A.H. (2003). Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J. Biol. Chem. 278, 43452–43459.10.1074/jbc.M307104200Suche in Google Scholar PubMed

Russo, S.B., Baicu, C.F., Van Laer, A., Geng, T., Kasiganesan, H., Zile, M.R., and Cowart, L.A. (2012). Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J. Clin. Invest. 122, 3919–3930.10.1172/JCI63888Suche in Google Scholar PubMed PubMed Central

Samanta, S., Stiban, J., Maugel, T.K., and Colombini, M. (2011). Visualization of ceramide channels by transmission electron microscopy. Biochim. Biophys. Acta 1808, 1196–1201.10.1016/j.bbamem.2011.01.007Suche in Google Scholar PubMed PubMed Central

Sassa, T., Suto, S., Okayasu, Y., and Kihara, A. (2012). A shift in sphingolipid composition from C24 to C16 increases susceptibility to apoptosis in HeLa cells. Biochim. Biophys. Acta 1821, 1031–1037.10.1016/j.bbalip.2012.04.008Suche in Google Scholar PubMed

Schiffmann, S., Sandner, J., Birod, K., Wobst, I., Angioni, C., Ruckhaberle, E., Kaufmann, M., Ackermann, H., Lotsch, J., Schmidt, H., et al. (2009). Ceramide synthases and ceramide levels are increased in breast cancer tissue. Carcinogenesis 30, 745–752.10.1093/carcin/bgp061Suche in Google Scholar PubMed

Senkal, C.E., Ponnusamy, S., Rossi, M.J., Bialewski, J., Sinha, D., Jiang, J.C., Jazwinski, S.M., Hannun, Y.A., and Ogretmen, B. (2007). Role of human longevity assurance gene 1 and C18-ceramide in chemotherapy-induced cell death in human head and neck squamous cell carcinomas. Mol. Cancer Ther. 6, 712–722.10.1158/1535-7163.MCT-06-0558Suche in Google Scholar PubMed

Separovic, D., Breen, P., Joseph, N., Bielawski, J., Pierce, J.S., Van Buren, E., and Gudz, T.I. (2012). siRNA-mediated down-regulation of ceramide synthase 1 leads to apoptotic resistance in human head and neck squamous carcinoma cells after photodynamic therapy. Anticancer Res. 32, 2479–2485.Suche in Google Scholar

Shiffman, D., Pare, G., Oberbauer, R., Louie, J.Z., Rowland, C.M., Devlin, J.J., Mann, J.F., and McQueen, M.J. (2014). A gene variant in CERS2 is associated with rate of increase in albuminuria in patients with diabetes from ONTARGET and TRANSCEND. PLoS One 9, e106631.10.1371/journal.pone.0106631Suche in Google Scholar PubMed PubMed Central

Siskind, L.J. and Colombini, M. (2000). The lipids C2- and C16-ceramide form large stable channels. Implications for apoptosis. J. Biol. Chem. 275, 38640–38644.10.1074/jbc.C000587200Suche in Google Scholar PubMed PubMed Central

Siskind, L.J., Mullen, T.D., Romero Rosales, K., Clarke, C.J., Hernandez-Corbacho, M.J., Edinger, A.L., and Obeid, L.M. (2010). The BCL-2 protein BAK is required for long-chain ceramide generation during apoptosis. J. Biol. Chem. 285, 11818–11826.10.1074/jbc.M109.078121Suche in Google Scholar PubMed PubMed Central

Spassieva, S., Seo, J.G., Jiang, J.C., Bielawski, J., Alvarez-Vasquez, F., Jazwinski, S.M., Hannun, Y.A., and Obeid, L.M. (2006). Necessary role for the Lag1p motif in (dihydro)ceramide synthase activity. J. Biol. Chem. 281, 33931–33938.10.1074/jbc.M608092200Suche in Google Scholar PubMed

Spiegel, S. and Milstien, S. (2003). Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat. Rev. Mol. Cell. Biol. 4, 397–407.10.1038/nrm1103Suche in Google Scholar PubMed

Sridevi, P., Alexander, H., Laviad, E.L., Pewzner-Jung, Y., Hannink, M., Futerman, A.H., and Alexander, S. (2009). Ceramide synthase 1 is regulated by proteasomal mediated turnover. Biochim. Biophys. Acta 1793, 1218–1227.10.1016/j.bbamcr.2009.04.006Suche in Google Scholar PubMed PubMed Central

Sridevi, P., Alexander, H., Laviad, E.L., Min, J., Mesika, A., Hannink, M., Futerman, A.H., and Alexander, S. (2010). Stress-induced ER to Golgi translocation of ceramide synthase 1 is dependent on proteasomal processing. Exp. Cell Res. 316, 78–91.10.1016/j.yexcr.2009.09.027Suche in Google Scholar PubMed PubMed Central

Stiban, J., Tidhar, R., and Futerman, A.H. (2010). Ceramide synthases: roles in cell physiology and signaling. Adv. Exp. Med. Biol. 688, 60–71.10.1007/978-1-4419-6741-1_4Suche in Google Scholar PubMed

Tait, S.W., and Green, D.R. (2010). Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell. Biol. 11, 621–632.10.1038/nrm2952Suche in Google Scholar PubMed

Tawada, C., Kanoh, H., Nakamura, M., Mizutani, Y., Fujisawa, T., Banno, Y., and Seishima, M. (2014). Interferon-g decreases ceramides with long-chain fatty acids: possible involvement in atopic dermatitis and psoriasis. J. Invest. Dermatol. 134, 712–718.10.1038/jid.2013.364Suche in Google Scholar PubMed

Tidhar, R. and Futerman, A.H. (2013). The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochim. Biophys. Acta 1833, 2511–2518.10.1016/j.bbamcr.2013.04.010Suche in Google Scholar PubMed

Tidhar, R., Ben-Dor, S., Wang, E., Kelly, S., Merrill, A.H. Jr., and Futerman, A.H. (2012). Acyl chain specificity of ceramide synthases is determined within a region of 150 residues in the Tram-Lag-CLN8 (TLC) domain. J. Biol. Chem. 287, 3197–3206.10.1074/jbc.M111.280271Suche in Google Scholar PubMed PubMed Central

Turpin, S.M., Nicholls, H.T., Willmes, D.M., Mourier, A., Brodesser, S., Wunderlich, C.M., Mauer, J., Xu, E., Hammerschmidt, P., Bronneke, H.S., et al. (2014). Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 20, 678–686.10.1016/j.cmet.2014.08.002Suche in Google Scholar PubMed

Venkataraman, K., Riebeling, C., Bodennec, J., Riezman, H., Allegood, J.C., Sullards, M.C., Merrill, A.H. Jr., and Futerman, A.H. (2002). Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. J. Biol. Chem. 277, 35642–35649.10.1074/jbc.M205211200Suche in Google Scholar PubMed

Voelkel-Johnson, C., Hannun, Y.A., and El-Zawahry, A. (2005). Resistance to TRAIL is associated with defects in ceramide signaling that can be overcome by exogenous C6-ceramide without requiring down-regulation of cellular FLICE inhibitory protein. Mol. Cancer Ther. 4, 1320–1327.10.1158/1535-7163.MCT-05-0086Suche in Google Scholar PubMed

White-Gilbertson, S., Mullen, T., Senkal, C., Lu, P., Ogretmen, B., Obeid, L., and Voelkel-Johnson, C. (2009). Ceramide synthase 6 modulates TRAIL sensitivity and nuclear translocation of active caspase-3 in colon cancer cells. Oncogene 28, 1132–1141.10.1038/onc.2008.468Suche in Google Scholar PubMed PubMed Central

Wilson, S.B. and Delovitch, T.L. (2003). Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity. Nat. Rev. Immunol. 3, 211–222.10.1038/nri1028Suche in Google Scholar PubMed

Wilson, S.B., Kent, S.C., Patton, K.T., Orban, T., Jackson, R.A., Exley, M., Porcelli, S., Schatz, D.A., Atkinson, M.A., Balk, S.P., et al. (1998). Extreme Th1 bias of invariant Va24JaQ T cells in type 1 diabetes. Nature 391, 177–181.10.1038/34419Suche in Google Scholar PubMed

Zhao, L., Spassieva, S.D., Jucius, T.J., Shultz, L.D., Shick, H.E., Macklin, W.B., Hannun, Y.A., Obeid, L.M., and Ackerman, S.L. (2011). A deficiency of ceramide biosynthesis causes cerebellar purkinje cell neurodegeneration and lipofuscin accumulation. PLoS Genet. 7, e1002063.10.1371/journal.pgen.1002063Suche in Google Scholar PubMed PubMed Central

Zigdon, H., Kogot-Levin, A., Park, J.W., Goldschmidt, R., Kelly, S., Merrill, A.H., Jr., Scherz, A., Pewzner-Jung, Y., Saada, A., and Futerman, A.H. (2013). Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain. J. Biol. Chem. 288, 4947–4956.10.1074/jbc.M112.402719Suche in Google Scholar PubMed PubMed Central

Zoller, I., Bussow, H., Gieselmann, V., and Eckhardt, M. (2005). Oligodendrocyte-specific ceramide galactosyltransferase (CGT) expression phenotypically rescues CGT-deficient mice and demonstrates that CGT activity does not limit brain galactosylceramide level. Glia 52, 190–198.10.1002/glia.20230Suche in Google Scholar PubMed

Received: 2014-12-12
Accepted: 2015-1-21
Published Online: 2015-1-24
Published in Print: 2015-6-1

©2015 by De Gruyter

Artikel in diesem Heft

  1. Frontmatter
  2. Guest Editorial
  3. Highlight: Molecular Medicine of Sphingolipids
  4. HIGHLIGHT: MOLECULAR MEDICINE OF SPHINGOLIPIDS
  5. The role of serum amyloid A and sphingosine-1-phosphate on high-density lipoprotein functionality
  6. Sphingolipids in viral infection
  7. Tackling the biophysical properties of sphingolipids to decipher their biological roles
  8. Ceramide and sphingosine in pulmonary infections
  9. Molecular mechanisms of erythrocyte aging
  10. Sphingolipids in liver injury, repair and regeneration
  11. Ultrasound-stimulated microbubble enhancement of radiation response
  12. Innate immune responses in the brain of sphingolipid lysosomal storage diseases
  13. Novel mechanisms of action of classical chemotherapeutic agents on sphingolipid pathways
  14. The role of sphingolipids in endothelial barrier function
  15. The effect of altered sphingolipid acyl chain length on various disease models
  16. Secretory sphingomyelinase in health and disease
  17. Preclinical development of a C6-ceramide NanoLiposome, a novel sphingolipid therapeutic
  18. Sphingomyelin breakdown in T cells: role in activation, effector functions and immunoregulation
  19. The molecular medicine of acid ceramidase
  20. Caenorhabditis elegans as a model to study sphingolipid signaling
  21. S1PR4 is required for plasmacytoid dendritic cell differentiation
  22. Antinociceptive effects of FTY720 during trauma-induced neuropathic pain are mediated by spinal S1P receptors
  23. Subcellular distribution of FTY720 and FTY720-phosphate in immune cells – another aspect of Fingolimod action relevant for therapeutic application
  24. Downregulation of sphingosine 1-phosphate (S1P) receptor 1 by dexamethasone inhibits S1P-induced mesangial cell migration
  25. Sphingosine kinase 2 deficiency increases proliferation and migration of renal mouse mesangial cells and fibroblasts
  26. Obituary
  27. The life and work of Dr. Robert Bittman (1942–2014)
Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2014-0310/html
Button zum nach oben scrollen