Abstract
The high-density lipoprotein (HDL) is one of the most important endogenous cardiovascular protective markers. HDL is an attractive target in the search for new pharmaceutical therapies and in the prevention of cardiovascular events. Some of HDL’s anti-atherogenic properties are related to the signaling molecule sphingosine-1-phosphate (S1P), which plays an important role in vascular homeostasis. However, for different patient populations it seems more complicated. Significant changes in HDL’s protective potency are reduced under pathologic conditions and HDL might even serve as a proatherogenic particle. Under uremic conditions especially there is a change in the compounds associated with HDL. S1P is reduced and acute phase proteins such as serum amyloid A (SAA) are found to be elevated in HDL. The conversion of HDL in inflammation changes the functional properties of HDL. High amounts of SAA are associated with the occurrence of cardiovascular diseases such as atherosclerosis. SAA has potent pro-atherogenic properties, which may have impact on HDL’s biological functions, including cholesterol efflux capacity, antioxidative and anti-inflammatory activities. This review focuses on two molecules that affect the functionality of HDL. The balance between functional and dysfunctional HDL is disturbed after the loss of the protective sphingolipid molecule S1P and the accumulation of the acute-phase protein SAA. This review also summarizes the biological activities of lipid-free and lipid-bound SAA and its impact on HDL function.
Acknowledgments
We acknowledge the financial support provided by the Deutsche Forschungsgemeinschaft and the Else Kröner Fresenius Stiftung.
References
Annema, W., Nijstad, N., Tolle, M., de Boer, J.F., Buijs, R.V., Heeringa, P., van der Giet, M., and Tietge, U.J., (2010). Myeloperoxidase and serum amyloid A contribute to impaired in vivo reverse cholesterol transport during the acute phase response but not group iia secretory phospholipase a(2). J. Lipid. Res. 51, 743–754.10.1194/jlr.M000323Suche in Google Scholar
Argraves, K.M., Gazzolo, P.J., Groh, E.M., Wilkerson, B.A., Matsuura, B.S., Twal, W.O., Hammad, S.M., and Argraves, W.S. (2008). High density lipoprotein-associated sphingosine 1-phosphate promotes endothelial barrier function. J. Biol. Chem. 283, 25074–25081.10.1074/jbc.M801214200Suche in Google Scholar
Artl, A., Marsche, G., Lestavel, S., Sattler, W., and Malle, E. (2000). Role of serum amyloid A during metabolism of acute-phase HDL by macrophages. Arterioscler Thromb. Vasc. Biol. 20, 763–772.10.1161/01.ATV.20.3.763Suche in Google Scholar
Artl, A., Marsche, G., Pussinen, P., Knipping, G., Sattler, W., and Malle, E. (2002). Impaired capacity of acute-phase high density lipoprotein particles to deliver cholesteryl ester to the human huh-7 hepatoma cell line. Int. J. Biochem. Cell Biol. 34, 370–381.10.1016/S1357-2725(01)00132-7Suche in Google Scholar
Assmann, G. and Nofer, J.R. (2003). Atheroprotective effects of high-density lipoproteins. Ann. Rev. Med. 54, 321–341.10.1146/annurev.med.54.101601.152409Suche in Google Scholar
Badolato, R., Wang, J.M., Murphy, W.J., Lloyd, A.R., Michiel, D.F., Bausserman, L.L., Kelvin, D.J., and Oppenheim, J.J. (1994). Serum amyloid A is a chemoattractant: Induction of migration, adhesion, and tissue infiltration of monocytes and polymorphonuclear leukocytes. J. Exp. Med. 180, 203–209.10.1084/jem.180.1.203Suche in Google Scholar
Banka, C.L., Yuan, T., de Beer, M.C., Kindy, M., Curtiss, L.K., and de Beer, F.C. (1995). Serum amyloid A (SAA): influence on HDL-mediated cellular cholesterol efflux. J. Lipid. Res. 36, 1058–1065.10.1016/S0022-2275(20)39863-1Suche in Google Scholar
Baranova, I.N., Bocharov, A.V., Vishnyakova, T.G., Kurlander, R., Chen, Z., Fu, D., Arias, I.M. Csako, G., Patterson, A.P., and Eggerman, T.L. (2010). Cd36 is a novel serum amyloid A (SAA) receptor mediating saa binding and saa-induced signaling in human and rodent cells. J. Biol. Chem. 285, 8492–8506.10.1074/jbc.M109.007526Suche in Google Scholar
Barter, P.J. (2002). Hugh Sinclair lecture: the regulation and remodelling of HDL by plasma factors. Atherosclerosis (Suppl.) 3, 39–47.10.1016/S1567-5688(02)00041-7Suche in Google Scholar
Barter, P., Kastelein, J., Nunn, A., and Hobbs, R. (2003). High density lipoproteins (HDLs) and atherosclerosis; the unanswered questions. Atherosclerosis 168, 195–211.10.1016/S0021-9150(03)00006-6Suche in Google Scholar
Barter, P.J., Caulfield, M., Eriksson, M., Grundy, S.M., Kastelein, J.J., Komajda, M., Lopez-Sendon, J., Mosca, M., Tardif, J.C., and Waters, D.D. (2007). Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2122.10.1056/NEJMoa0706628Suche in Google Scholar
Blaho, V.A. and Hla, T. (2011). Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors. Chem. Rev. 111, 6299–6320.10.1021/cr200273uSuche in Google Scholar
Cabana, V.G., Siegel, J.N., and Sabesin, S.M. (1989). Effects of the acute phase response on the concentration and density distribution of plasma lipids and apolipoproteins. J. Lipid Res. 30, 39–49.10.1016/S0022-2275(20)38390-5Suche in Google Scholar
Cabana, V.G., Lukens, J.R., Rice, K.S., Hawkins, T.J., and Getz, G.S. (1996). HDL content and composition in acute phase response in three species: triglyceride enrichment of HDL a factor in its decrease. J. Lipid Res. 37, 2662–2674.10.1016/S0022-2275(20)37469-1Suche in Google Scholar
Cabana, V.G., Reardon, C.A., Feng, N., Neath, S., Lukens, J., and Getz, G.S. (2003). Serum paraoxonase: effect of the apolipoprotein composition of hdl and the acute phase response. J. Lipid Res. 44, 780–792.10.1194/jlr.M200432-JLR200Suche in Google Scholar PubMed
Cabana, V.G., Feng, N., Reardon, C.A., Lukens, J., Webb, N.R., de Beer, F.C., and Getz, G.S. (2004). Influence of ApoA-i and ApoE on the formation of serum amyloid A-containing lipoproteins in vivo and in vitro. J. Lipid Res. 45, 317–325.10.1194/jlr.M300414-JLR200Suche in Google Scholar PubMed
Cai, L., de Beer, M.C., de Beer, F.C., and van der Westhuyzen, D.R. (2005). Serum amyloid A is a ligand for scavenger receptor class b type i and inhibits high density lipoprotein binding and selective lipid uptake. J. Biol. Chem. 280, 2954–2961.10.1074/jbc.M411555200Suche in Google Scholar PubMed
Cheng, N., He, R., Tia, J., Ye, P.P., and Ye, R.D. (2008). Cutting edge: Tlr2 is a functional receptor for acute-phase serum amyloid A. J. Immunol. 181, 22–26.10.4049/jimmunol.181.1.22Suche in Google Scholar PubMed PubMed Central
Christenson, K., Bjorkman, L., Tangemo, C., and Bylund, J. (2008). Serum amyloid A inhibits apoptosis of human neutrophils via a p2x7-sensitive pathway independent of formyl peptide receptor-like 1. J. Leukoc. Biol. 83, 139–148.10.1189/jlb.0507276Suche in Google Scholar PubMed
Christoffersen, C., Obinata, H., Kumaraswamy, S.B., Galvani, S., Ahnstrom, J., Sevvana, M., Egerer-Sieber, C., Muller, Y.A., Hla, T., Nielsen, L.B., et al. (2011). Endothelium-protective sphingosine-1-phosphate provided by hdl-associated apolipoprotein M. Proc. Natl. Acad. Sci. USA 108, 9613–9618.10.1073/pnas.1103187108Suche in Google Scholar PubMed PubMed Central
Chun, J., Goetzl, E.J., Hla, T., Igarashi, Y., Lynch, K.R., Moolenaar, W. Moolenaar, Pyne, S., and Tigyi, G. (2002). International union of pharmacology. XXXIV. Lysophospholipid receptor nomenclature. Pharmacol. Rev. 54, 265–269.10.1124/pr.54.2.265Suche in Google Scholar
Coetzee, G.A., Strachan, A.F., van der Westhuyzen, D.R., Hoppe, H.C., Jeenah, M.S., and de Beer, F.C. (1986). Serum amyloid A-containing human high density lipoprotein 3. Density, size, and apolipoprotein composition. J. Biol. Chem. 261, 9644–9651.10.1016/S0021-9258(18)67562-3Suche in Google Scholar
Corsetti, J.P., Zareba, W., Moss, A.J., Rainwater, D.L., and Sparks, C.E. (2006). Elevated HDL is a risk factor for recurrent coronary events in a subgroup of non-diabetic postinfarction patients with hypercholesterolemia and inflammation. Atherosclerosis 187, 191–197.10.1016/j.atherosclerosis.2005.09.012Suche in Google Scholar
de Beer, M.C., Wroblewski, J.M., Noffsinger, V.P., Ji, A., Meyer, J.M., van der Westhuyzen, D.R., de Beer, F.C., and Webb, N.R. (2013). The impairment of macrophage-to-feces reverse cholesterol transport during inflammation does not depend on serum amyloid A. J. Lipids 2013, 283–486.Suche in Google Scholar
de Souza, J.A., vindis, C., Negre-Salvayre, A., Rye, K.A., Couturier, K.A., Therond, P., Chantepie, S. Salvayre, R., Chapman, M.J., and Kontush, A. (2010). Small, dense HDL 3 particles attenuate apoptosis in endothelial cells: pivotal role of apolipoprotein A-I. J. Cell Mol. Med. 14, 608–620.Suche in Google Scholar
Dong, Z., Wu, T., Qin, W., An, C., Wang, Z., Zhang, M., Zhang, Y., Zhang, C., and An, F. (2011). Serum amyloid A directly accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Mol. Med. 17, 1357–1364.10.2119/molmed.2011.00186Suche in Google Scholar
Glomset, J.A. (1968). The plasma lecithins: Cholesterol acyltransferase reaction. J. Lipid Res. 9, 155–167.10.1016/S0022-2275(20)43114-1Suche in Google Scholar
Gordon, T., Castelli, W.P., Hjortland, M.C., Kannel, W.B., and Dawber, T.R. (1977). High density lipoprotein as a protective factor against coronary heart disease. The Framingham study. Am. J. Med. 62, 707–714.10.1016/0002-9343(77)90874-9Suche in Google Scholar
Hannun, Y.A. and Obeid, L.M. (2008). Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9, 139–150.10.1038/nrm2329Suche in Google Scholar PubMed
Hanson, M.A., Roth, C.B., Jo, E., Griffith, M.T., Scott, F.L., Reingart, G., Desale, H., Clemons, B., Cahalan, S.M., Schuerer, S.C., et al. (2012). Crystal structure of a lipid g protein-coupled receptor. Science 335, 851–855.10.1126/science.1215904Suche in Google Scholar PubMed PubMed Central
Hatanaka, E., Dermargos, A., Armelin, H.A., Curi, R., and Campa, A. (2011). Serum amyloid A induces reactive oxygen species (ROS) production and proliferation of fibroblast. Clin. Exp. Immunol. 163, 362–367.10.1111/j.1365-2249.2010.04300.xSuche in Google Scholar PubMed PubMed Central
He, R.L., Zhou, J., Hanson, C.Z., Chen, J., Cheng, N., and Ye, R.D. (2009). Serum amyloid A induces γ-CSF expression and neutrophilia via toll-like receptor 2. Blood 113, 429–437.10.1182/blood-2008-03-139923Suche in Google Scholar PubMed PubMed Central
Jurek, A., Turyna, B., Kubit, K., and Klein, A. (2008). The ability of HDL to inhibit VCAM-1 expression and oxidized LDL uptake is impaired in renal patients. Clin. Biochem. 41, 1015–1018.10.1016/j.clinbiochem.2008.04.019Suche in Google Scholar PubMed
Kappelle, P.J., Bijzet, J., Hazenberg, B.P., and Dullaart, R.P. (2011). Lower serum paraoxonase-1 activity is related to higher serum amyloid A levels in metabolic syndrome. Arch. Med. Res. 42, 219–225.10.1016/j.arcmed.2011.05.002Suche in Google Scholar PubMed
Khansari, N., Shakiba, Y., and Mahmoudi, M. (2009). Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat. Inflamm. Allergy. Drug Discov. 3, 73–80.10.2174/187221309787158371Suche in Google Scholar PubMed
Kilpatrick, R.D., McAllister, C.J., Kovesdy, C.P., Derose, S.F., Kopple, J.D., and Kalantar-Zadeh, K. (2007). Association between serum lipids and survival in hemodialysis patients and impact of race. J. Am. Soc. Nephrol. 18, 293–303.10.1681/ASN.2006070795Suche in Google Scholar PubMed
King, V.L., Thompson, J., and Tannock, L.R. (2011). Serum amyloid A in atherosclerosis. Curr. Opin. Lipidol. 22, 302–307.10.1097/MOL.0b013e3283488c39Suche in Google Scholar PubMed
Kisilevsky, R. and Subrahmanyan, L. (1992). Serum amyloid A changes high density lipoprotein’s cellular affinity. A clue to serum amyloid A’s principal function. Lab. Invest. 66, 778–785.Suche in Google Scholar
Kisilevsky, R. and Tam, S.P. (2003). Macrophage cholesterol efflux and the active domains of serum amyloid A 2.1. J. Lipid Res. 44, 2257–2269.10.1194/jlr.M300133-JLR200Suche in Google Scholar PubMed
Koch, A., Pfeilschifter, J., and Huwiler, A. (2013). Sphingosine 1-phosphate in renal diseases. Cellular Physiology and Biochemistry 31, 745–760.10.1159/000350093Suche in Google Scholar PubMed
Kumaraswamy, S.B., Linder, A., Akesson, P., and Dahlback, B. (2012). Decreased plasma concentrations of apolipoprotein m in sepsis and systemic inflammatory response syndromes. Crit. Care 16, R60.10.1186/cc11305Suche in Google Scholar PubMed PubMed Central
Kumon, Y., Nakauchi, Y., Suehiro, T., Shiinoki, T., Tanimoto, N., Inoue, M., Nakamura, T. Hashimoto, K., and Sipe, J.D. (2002). Proinflammatory cytokines but not acute phase serum amyloid A or C-reactive protein, downregulate paraoxonase 1 (pon1) expression by HepG2 cells. Amyloid 9, 160–164.10.3109/13506120209114817Suche in Google Scholar PubMed
Kwon, Y.G., Min, J.K., Kim, K.M., Lee, D.J., Billar, T.R., and Kim, Y.M. (2001). Sphingosine 1-phosphate protects human umbilical vein endothelial cells from serum-deprived apoptosis by nitric oxide production. J. Biol. Chem. 276, 10627–10633.10.1074/jbc.M011449200Suche in Google Scholar PubMed
Lakota, K., Mrak-Poljsak, K., Bozic, B., Tomsic, M., and Sodin-Semrl, S. (2013). Serum amyloid A activation of human coronary artery endothelial cells exhibits a neutrophil promoting molecular profile. Microvasc, Res, 90, 55–63.10.1016/j.mvr.2013.07.011Suche in Google Scholar
Le Goff, W., Guerin, M., and Chapman, M.J. (2004). Pharmacological modulation of cholesteryl ester transfer protein, a new therapeutic target in atherogenic dyslipidemia. Pharmacol. Ther. 101, 17–38.10.1016/j.pharmthera.2003.10.001Suche in Google Scholar
Le Stunff, H., Peterson, C., Thornton, R. Milstein, S., Mandala, S.M., and Spiegel, S. (2002). Characterization of murine sphingosine-1-phosphate phosphohydrolase. J. Biol. Chem. 277, 8920–8927.10.1074/jbc.M109968200Suche in Google Scholar
Lee, M.J., Van Brocklyn, J.R., Thangada, S., Liu, C.H., Hand, A.R., Menzeleev, R., Spiegel, S., and Hla, T. (1998). Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor Edg-1. Science 279, 1552–1555.10.1126/science.279.5356.1552Suche in Google Scholar
Lee, M.J., Thangada, S., Claffey, K.P., Ancellin, N., Liu, C.H., Kluk, M., Volpi, M., Sha’afi, R.I., and Hla, T. (1999). Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 99, 301–312.10.1016/S0092-8674(00)81661-XSuche in Google Scholar
Lee, H.Y., Kim, M.K., Park, K.S., Bae, Y.H., Yun, J., Park, J.I., Kwak, J.Y., and Bae, Y.S. (2005). Serum amyloid A stimulates matrix-metalloproteinase-9 upregulation via formyl peptide receptor like-1-mediated signaling in human monocytic cells. Biochem. Biophys. Res. Commun. 330, 989–998.10.1016/j.bbrc.2005.03.069Suche in Google Scholar
Lee, H.Y., Kim, S.D., Shim, J.W., Kim, H.J., Yun, J., Baek, S.H., Kim, K., and Bae, Y.S. (2010). A pertussis toxin sensitive G-protein-independent pathway is involved in serum amyloid A-induced formyl peptide receptor 2-mediated Ccl2 production. Exp. Mol. Med. 42, 302–309.10.3858/emm.2010.42.4.029Suche in Google Scholar
Lee, H.Y., Kim, S.D., Baek, S.H., Choi, J.H., Cho, K.H., Zabel, B.A., and Bae, Y.S. (2013a). Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation. Biochem. Biophys. Res. Commun 433, 18–23.10.1016/j.bbrc.2013.02.077Suche in Google Scholar
Lee, H.Y., Kim, S.D., Baek, S.H., Choi, J.H., and Bae, Y.S. (2013b). Role of formyl peptide receptor 2 on the serum amyloid A-induced macrophage foam cell formation. Biochem. Biophys. Res. Commun. 433, 255–259.10.1016/j.bbrc.2013.03.002Suche in Google Scholar
Liang, J.S., Schreiber, B.M., Salmona, M., Phillip, G., Gonnerman, W.A., de Beer F.C., and Sipe, J.D. (1996). Amino terminal region of acute phase, but not constitutive, serum amyloid A (ApoSAA) specifically binds and transports cholesterol into aortic smooth muscle and HepG2 cells. J. Lipid Res. 37, 2109–2116.10.1016/S0022-2275(20)37293-XSuche in Google Scholar
Malle, E., Steinmetz, A., and Raynes, J.G. (1993). Serum amyloid A (SAA): an acute phase protein and apolipoprotein. Atherosclerosis 102, 131–146.10.1016/0021-9150(93)90155-NSuche in Google Scholar
Marhaug, G. and Husby, G. (1982). Serum amyloid A protein in high density lipoprotein fraction of human acute phase serum. Lancet 2, 1463.10.1016/S0140-6736(82)91362-9Suche in Google Scholar
McGillicuddy, F.C., de la Llera Moya, M., Hinkle, C.C., Joshi, M.R., Chiquoine, E.H., Billheimer, J.T., Rothblat, G.H., and Reilly, M.P. (2009). Inflammation impairs reverse cholesterol transport in vivo. Circulation 119, 1135–1145.10.1161/CIRCULATIONAHA.108.810721Suche in Google Scholar PubMed PubMed Central
Medina-Urrutia, A., Juarez-Rojas, J.G., Martinez-Alvarado, R., Jorge-Galarza, E., Posadas-Sanchez, R., Cardoso-Saldana, G., Caracas-Portilla, N., Mendoza-Perez, E., and Posadas-Romero, C. (2008). High-density lipoprotein subclasses distribution and composition in Mexican adolescents with low HDL cholesterol and/or high triglyceride concentrations, and its association with insulin and C-reactive protein. Atherosclerosis 201, 392–397.10.1016/j.atherosclerosis.2008.02.029Suche in Google Scholar PubMed
Meek, R.L., Urieli-Shoval, S., and Benditt, E.P. (1994). Expression of apolipoprotein serum amyloid A mRNA in human atherosclerotic lesions and cultured vascular cells: implications for serum amyloid A function. Proc. Natl. Acad. USA 91, 3186–3190.10.1073/pnas.91.8.3186Suche in Google Scholar PubMed PubMed Central
Migita, K., Kawabe, Y., Tominaga, M., Origuchi, T., Aoyagi, T., and Eguchi, K. (1998). Serum amyloid A protein induces production of matrix metalloproteinases by human synovial fibroblasts. Lab. Invest. 78, 535–539.Suche in Google Scholar
Mineo, C., Deguchi, H., Griffin, J.H., and Shaul, P.W. (2006). Endothelial and antithrombotic actions of HDL. Circ. Res. 98, 1352–1364.10.1161/01.RES.0000225982.01988.93Suche in Google Scholar PubMed
Mullan, R.H., McCormick, J., Connolly, M., Bresnihan, B., Veale, D.J., and Fearon, U. (2010). A role for the high-density lipoprotein receptor sr-b1 in synovial inflammation via serum amyloid-A. Am. J. Pathol. 176, 1999–2008.10.2353/ajpath.2010.090014Suche in Google Scholar PubMed PubMed Central
Murata, N., Sato, K., Kon, J., Tomura, H., Yanagita, M., Kuwabara, A., Ui, M., and Okajima, F. (2000). Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem. J. 352 Pt 3, 809–815.10.1042/bj3520809Suche in Google Scholar
Ng, C.J., Shih, D.M., Hama, S.Y., Villa, N., Navab, M., and Reddy, S.T. (2005). The paraoxonase gene family and atherosclerosis. Free Radic. Biol. Med. 38, 153–163.10.1016/j.freeradbiomed.2004.09.035Suche in Google Scholar PubMed
Niemi, K., Teirila, L., Lappalainen, J., Rajamaki, K., Baumann, M.H., Oorni, K., Wolff, H., Kovanen, P.T., Matikainen, S., and Eklund, K.K. (2011). Serum amyloid A activates the nlrp3 inflammasome via p2x7 receptor and a cathepsin B-sensitive pathway. J. Immunol. 186, 6119–6128.10.4049/jimmunol.1002843Suche in Google Scholar PubMed
Nofer, J.R., Kehrel, B., Fobker, M., Levkau, B., Assmann, G., and von Eckardstein, A. (2002). HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis 161, 1–16.10.1016/S0021-9150(01)00651-7Suche in Google Scholar
Nofer, J.R., van der Giet, M., Tolle, M., Wolinska, I., von Wnuck Lipinski, K., Baba, H.A., Tietge, U.J., Godecke, A., Ishii, I., Kleuser, B., et al. (2004). HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J. Clin. Invest. 113, 569–581.10.1172/JCI200418004Suche in Google Scholar
Ogawa, C., Kihara, A., Gokoh, M., and Igarashi, Y. (2003). Identification and characterization of a novel human sphingosine-1-phosphate phosphohydrolase, Hspp2. J. Biol. Chem. 278, 1268–1272.10.1074/jbc.M209514200Suche in Google Scholar
Ohta, T., Nakamura, R., Ikeda, Y., Shinohara, M., Miyazaki, A., Horiuchi, S., and Matsuda, I. (1992). Differential effect of subspecies of lipoprotein containing apolipoprotein A-I on cholesterol efflux from cholesterol-loaded macrophages: functional correlation with lecithin:cholesterol acyltransferase. Biochim. Biophys. Acta 1165, 119–128.10.1016/0005-2760(92)90083-8Suche in Google Scholar
Ohta, S., Tanaka, M., Sakakura, K., Kawakami, T., Aimoto, S., and Saito, H. (2009). Defining lipid-binding regions of human serum amyloid A using its fragment peptides. Chem. Phys. Lipids 162, 62–68.10.1016/j.chemphyslip.2009.07.008Suche in Google Scholar PubMed
Olivera, A. and Spiegel, S. (1993). Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365, 557–560.10.1038/365557a0Suche in Google Scholar PubMed
Patel, H., Fellowes, R., Coade, S., and Woo, P. (1998). Human serum amyloid A has cytokine-like properties. Scand. J. Immunol. 48, 410–418.10.1046/j.1365-3083.1998.00394.xSuche in Google Scholar PubMed
Qiao, J.H., Xie, P.Z., Fishbein, M.C., Kreuzer, J., Drake, T.A., Demer, L.L., and Lusis, A.J. (1994). Pathology of atheromatous lesions in inbred and genetically engineered mice. Genetic determination of arterial calcification. Arterioscler Thromb. 14, 1480–1497.10.1161/01.ATV.14.9.1480Suche in Google Scholar
Sandri, S., Rodriguez, D., Gomes, E., Monteiro, H.P., Russo, M., and Campa, A. (2008). Is serum amyloid A an endogenous Tlr4 agonist? J. Leukoc. Biol. 83, 1174–1180.10.1189/jlb.0407203Suche in Google Scholar PubMed
Sattler, K.J., Elbasan, S., Keul, P., Elter-Schulz, M., Bode, C., Graler, M.H., Brocker-Preuss, M., Budde, T., Erbel, T., Heusch, G., et al. (2010). Sphingosine 1-phosphate levels in plasma and HDL are altered in coronary artery disease. Basic Res. Cardiol. 105, 821–832.10.1007/s00395-010-0112-5Suche in Google Scholar PubMed
Schuchardt, M., Tölle M., Prüfer, J., and van der Giet, M. (2011). Pharmacological relevance and potential of phingosine 1-phosphate in the vascular system. Br. J. Pharmacol. 162, 1140–1162.10.1111/j.1476-5381.2011.01260.xSuche in Google Scholar
Schwartz, G.G., Olsson. A.G., Ballantyne, C.M., Barter, P.J., Holme, I.M., Kallend, D., Leiter, L.A., Leitersdorf, E., McMurray, J.J., Shah, J.J., et al. (2009). Rationale and design of the dal-outcomes trial: efficacy and safety of dalcetrapib in patients with recent acute coronary syndrome. Am. Heart J. 158, 896–901 e893.10.1016/j.ahj.2009.09.017Suche in Google Scholar
Song, C., Shen, Y., Yamen, Y., Hsu, K., Yan, W., Witting, P.K., Geczy, C.L., and Freedman, S.B. (2009a). Serum amyloid A may potentiate prothrombotic and proinflammatory events in acute coronary syndromes. Atherosclerosis 202, 596–604.10.1016/j.atherosclerosis.2008.04.049Suche in Google Scholar
Song, C., Hsu, K., Yamen, E., Yan, E., Fock, J., Witting, P.K., Geczy, P.K., and Freedman, S.B. (2009b). Serum amyloid A induction of cytokines in monocytes/macrophages and lymphocytes. Atherosclerosis 207, 374–383.10.1016/j.atherosclerosis.2009.05.007Suche in Google Scholar
Stein, O. and Stein, Y. (1999). Atheroprotective mechanisms of HDL. Atherosclerosis 144, 285–301.10.1016/S0021-9150(99)00065-9Suche in Google Scholar
Stonik, J.A., Remaley, A.T., Demosky, S.J., Neufeld, E.B., Bocharov, A., and Brewer, H.B. (2004). Serum amyloid a promotes abca1-dependent and abca1-independent lipid efflux from cells. Biochem. Biophys. Res. Commun. 321, 936–941.10.1016/j.bbrc.2004.07.052Suche in Google Scholar
Sullivan, C.P., Seidl, S.E., Rich, C.B., Raymondjean, M., and Schreiber, M. (2010). Secretory phospholipase A2, group iia is a novel serum amyloid A target gene: activation of smooth muscle cell expression by an interleukin-1 receptor-independent mechanism. J. Biol. Chem. 285, 565–575.10.1074/jbc.M109.070565Suche in Google Scholar
Tam, S.P., Flexman, A., Hulme, J., and Kisilevsky, R. (2002). Promoting export of macrophage cholesterol: the physiological role of a major acute-phase protein, serum amyloid A 2.1. J. Lipid Res. 43, 1410–1420.10.1194/jlr.M100388-JLR200Suche in Google Scholar
Tanimoto, N., Kumon, Y., Suehiro, T., Ohkubo, S., Ikeda, Y., Nishiya, K., and Hashimoto, K. (2003). Serum paraoxonase activity decreases in rheumatoid arthritis. Life Sci. 72, 2877–2885.10.1016/S0024-3205(03)00195-4Suche in Google Scholar
Tolle, M., Pawlak, A., Schuchardt, M., Kawamura, A., Tietge, U.J., Lorkowski, S., Keul, P., Assmann, P., Chun, P., Levkau, B., et al. (2008). HDL-associated lysosphingolipids inhibit NAD(P)H oxidase-dependent monocyte chemoattractant protein-1 production. Arterioscler Thromb. Vasc. Biol. 28, 1542–1548.10.1161/ATVBAHA.107.161042Suche in Google Scholar PubMed PubMed Central
Tolle, M., Huang, T., Schuchardt, T., Jankowski, T., Prufer, T., Jankowski, J., Tietge, U.J., Zidek, W., and van der Giet, M. (2012). High-density lipoprotein loses its anti-inflammatory capacity by accumulation of pro-inflammatory-serum amyloid A. Cardiovasc. Res. 94, 154–162.10.1093/cvr/cvs089Suche in Google Scholar
Tsun, J.G., Shiu, S.W., Wong, S.W., Yung, S., Chan, S., and Tan, K.C. (2013). Impact of serum amyloid A on cellular cholesterol efflux to serum in type 2 diabetes mellitus. Atherosclerosis 231, 405–410.10.1016/j.atherosclerosis.2013.10.008Suche in Google Scholar
Urieli-Shoval, S., Meek, R.L., Hanson, R.H., Eriksen, N., and Benditt, N. (1994). Human serum amyloid A genes are expressed in monocyte/macrophage cell lines. Am. J. Pathol. 145, 650–660.Suche in Google Scholar
van der Westhuyzen, D.R., Cai, L., de Beer, M.C., and de Beer, F.C. (2005). Serum amyloid A promotes cholesterol efflux mediated by scavenger receptor B-I. J. Biol. Chem. 280, 35890–35895.10.1074/jbc.M505685200Suche in Google Scholar
Van Lenten, B.J., Hama, S.Y., de Beer, F.C., Stafforini, F.C., McIntyre, F.C., Prescott, S.M., La Du, B.N., Fogelman, A.M., and Navab, M. (1995). Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J. Clin. Invest. 96, 2758–2767.10.1172/JCI118345Suche in Google Scholar
Van Lenten, B.J., Navab, M., Shih, D., Fogelman, A.M., and Lusis, A.J. (2001). The role of high-density lipoproteins in oxidation and inflammation. Trends Cardiovasc. Med. 11, 155–161.10.1016/S1050-1738(01)00095-0Suche in Google Scholar
Vaziri, N.D., Moradi, H., Pahl, H., Fogelman, A.M., and Navab, M. (2009). In vitro stimulation of HDL anti-inflammatory activity and inhibition of LDL pro-inflammatory activity in the plasma of patients with end-stage renal disease by an Apoa-1 mimetic peptide. Kidney Int. 76, 437–444.10.1038/ki.2009.177Suche in Google Scholar PubMed PubMed Central
Vedhachalam, C., Chetty, P.S., Nickel, M., Dhanasekaran, P., Lund-Katz, S., Rothblat, G.H., and Phillips, M.C. (2010). Influence of apolipoprotein (Apo) A-I structure on nascent high density lipoprotein (HDL) particle size distribution. J. Biol. Chem. 285, 31965–31973.10.1074/jbc.M110.126292Suche in Google Scholar PubMed PubMed Central
Venkataraman, K., Thangada, S., Michaud, J., Oo, J., Ai, Y., Lee, Y.M., Wu, M., Parikh, N.S., Kahn, F., Proia, R.L., et al. (2006). Extracellular export of sphingosine kinase-1a contributes to the vascular s1p gradient. Biochem. J. 397, 461–471.10.1042/BJ20060251Suche in Google Scholar PubMed PubMed Central
Wang, X., Chai, H., Wang, Z., Lin, P.H., Yao, Q., and Chen, C. (2008). Serum amyloid A induces endothelial dysfunction in porcine coronary arteries and human coronary artery endothelial cells. Am. J. Physiol. Heart. Circ. Physiol. 295, H2399–H2408.10.1152/ajpheart.00238.2008Suche in Google Scholar PubMed PubMed Central
Wang, D.X., Liu, H., Yan, L.R., Zhang, Y.P., Guan, X.Y., Xu, Z.M., Jia, Y.H., and Li, Y.S. (2013). The relationship between serum amyloid A and apolipoprotein A-i in high-density lipoprotein isolated from patients with coronary heart disease. Chin. Med. J. (Engl) 126, 3656–3661.Suche in Google Scholar
Watson, A.D., Navab, M., Hama, S.Y., Sevanian, A., Prescott, A., Stafforini, A., McIntyre, T.M., Du, B.N., Fogelman, A.M., and Berliner, J.A. (1995a). Effect of platelet activating factor-acetylhydrolase on the formation and action of minimally oxidized low density lipoprotein. J. Clin. Invest. 95, 774–782.10.1172/JCI117726Suche in Google Scholar PubMed PubMed Central
Watson, A.D., Berliner, J.A., Hama, S.Y., La Du, B.N., Faull, K.F., Fogelman, A.M., and Navab, A.M. (1995b). Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J. Clin. Invest. 96, 2882–2891.10.1172/JCI118359Suche in Google Scholar PubMed PubMed Central
Weichhart, T., Kopecky, C., Kubicek, M., Haidinger, M., Doller, D., Katholnig, K., Suarna, C., Eller, P., Tolle, P., Gerner, P., et al. (2012). Serum amyloid A in uremic HDL promotes inflammation. J. Am. Soc. Nephrol. 23, 934–947.10.1681/ASN.2011070668Suche in Google Scholar PubMed PubMed Central
Wilkerson, B.A., Grass, G.D., Wing, S.B., Argraves, S.B., and Argraves, S.B. (2012). Sphingosine 1-phosphate (S1p) carrier-dependent regulation of endothelial barrier: high density lipoprotein (HDL)-s1p prolongs endothelial barrier enhancement as compared with albumin-S1P via effects on levels, trafficking, and signaling of S1P1. J. Biol. Chem. 287, 44645–44653.10.1074/jbc.M112.423426Suche in Google Scholar PubMed PubMed Central
Witting, P.K., Song, C., Hsu, K., Hua, S., Parry, S.N., Aran, R., Geczy, C., and Freedman, C. (2011). The acute-phase protein serum amyloid A induces endothelial dysfunction that is inhibited by high-density lipoprotein. Free Radic. Biol. Med. 51, 1390–1398.10.1016/j.freeradbiomed.2011.06.031Suche in Google Scholar PubMed
Xia, P., Vadas, M.A., Rye, M.A., Barter, P.J., and Gamble, P.J. (1999). High density lipoproteins (HDL) interrupt the sphingosine kinase signaling pathway. A possible mechanism for protection against atherosclerosis by HDL. J. Biol. Chem. 274, 33143–33147.10.1074/jbc.274.46.33143Suche in Google Scholar PubMed
Yamada, T., Kakihara, T., Kamishima, T., Fukuda, T., and Kawai, T. (1996). Both acute phase and constitutive serum amyloid A are present in atherosclerotic lesions. Pathol. Int. 46, 797–800.10.1111/j.1440-1827.1996.tb03552.xSuche in Google Scholar PubMed
Yang, Y., Yan, B., Fu, B., Xu, Y., and Tian, Y. (2005). Relationship between plasma lipid concentrations and HDL subclasses. Clin. Chim. Acta 354, 49–58.10.1016/j.cccn.2004.11.015Suche in Google Scholar PubMed
©2015 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Guest Editorial
- Highlight: Molecular Medicine of Sphingolipids
- HIGHLIGHT: MOLECULAR MEDICINE OF SPHINGOLIPIDS
- The role of serum amyloid A and sphingosine-1-phosphate on high-density lipoprotein functionality
- Sphingolipids in viral infection
- Tackling the biophysical properties of sphingolipids to decipher their biological roles
- Ceramide and sphingosine in pulmonary infections
- Molecular mechanisms of erythrocyte aging
- Sphingolipids in liver injury, repair and regeneration
- Ultrasound-stimulated microbubble enhancement of radiation response
- Innate immune responses in the brain of sphingolipid lysosomal storage diseases
- Novel mechanisms of action of classical chemotherapeutic agents on sphingolipid pathways
- The role of sphingolipids in endothelial barrier function
- The effect of altered sphingolipid acyl chain length on various disease models
- Secretory sphingomyelinase in health and disease
- Preclinical development of a C6-ceramide NanoLiposome, a novel sphingolipid therapeutic
- Sphingomyelin breakdown in T cells: role in activation, effector functions and immunoregulation
- The molecular medicine of acid ceramidase
- Caenorhabditis elegans as a model to study sphingolipid signaling
- S1PR4 is required for plasmacytoid dendritic cell differentiation
- Antinociceptive effects of FTY720 during trauma-induced neuropathic pain are mediated by spinal S1P receptors
- Subcellular distribution of FTY720 and FTY720-phosphate in immune cells – another aspect of Fingolimod action relevant for therapeutic application
- Downregulation of sphingosine 1-phosphate (S1P) receptor 1 by dexamethasone inhibits S1P-induced mesangial cell migration
- Sphingosine kinase 2 deficiency increases proliferation and migration of renal mouse mesangial cells and fibroblasts
- Obituary
- The life and work of Dr. Robert Bittman (1942–2014)
Artikel in diesem Heft
- Frontmatter
- Guest Editorial
- Highlight: Molecular Medicine of Sphingolipids
- HIGHLIGHT: MOLECULAR MEDICINE OF SPHINGOLIPIDS
- The role of serum amyloid A and sphingosine-1-phosphate on high-density lipoprotein functionality
- Sphingolipids in viral infection
- Tackling the biophysical properties of sphingolipids to decipher their biological roles
- Ceramide and sphingosine in pulmonary infections
- Molecular mechanisms of erythrocyte aging
- Sphingolipids in liver injury, repair and regeneration
- Ultrasound-stimulated microbubble enhancement of radiation response
- Innate immune responses in the brain of sphingolipid lysosomal storage diseases
- Novel mechanisms of action of classical chemotherapeutic agents on sphingolipid pathways
- The role of sphingolipids in endothelial barrier function
- The effect of altered sphingolipid acyl chain length on various disease models
- Secretory sphingomyelinase in health and disease
- Preclinical development of a C6-ceramide NanoLiposome, a novel sphingolipid therapeutic
- Sphingomyelin breakdown in T cells: role in activation, effector functions and immunoregulation
- The molecular medicine of acid ceramidase
- Caenorhabditis elegans as a model to study sphingolipid signaling
- S1PR4 is required for plasmacytoid dendritic cell differentiation
- Antinociceptive effects of FTY720 during trauma-induced neuropathic pain are mediated by spinal S1P receptors
- Subcellular distribution of FTY720 and FTY720-phosphate in immune cells – another aspect of Fingolimod action relevant for therapeutic application
- Downregulation of sphingosine 1-phosphate (S1P) receptor 1 by dexamethasone inhibits S1P-induced mesangial cell migration
- Sphingosine kinase 2 deficiency increases proliferation and migration of renal mouse mesangial cells and fibroblasts
- Obituary
- The life and work of Dr. Robert Bittman (1942–2014)