Startseite Lebenswissenschaften Chemoenzymatic polycondensation of para-benzylamino phenol
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Chemoenzymatic polycondensation of para-benzylamino phenol

  • Pinar Yildirim , Ersen Gokturk , Ersen Turac , Haci O Demir und Ertugrul Sahmetlioglu EMAIL logo
Veröffentlicht/Copyright: 11. Februar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

para-Benzylamine substituted oligophenol was synthesized via enzymatic oxidative polycondensation of 4-(benzylamino)phenol (BAP). Polymerization involved only the phenolic moiety without oxidizing the sec-amine (benzylamine) group. Chemoselective polycondensation of BAP monomer using HRP enzyme yielded oligophenol with sec-amine functionality on the side-chain. Effects of various factors including solvent system, reaction pH and temperature on the polycondensation were studied. Optimum polymerization process with the highest yield (63 %) and molecular weight (Mn = 5000, degree of polymerization ≈ 25) was achieved using the EtOH/ buffer (pH 5.0; 1 : 1 vol. ratio) at 25 °C in 24 h under air. Characterization of the oligomer was accomplished by 1H NMR and 13C NMR, Fourier transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), ultraviolet-visible spectroscopy (UV-Vis), cyclic voltammetry (CV) and thermogravimetric analysis (TGA). The polymerization process involved the elimination of hydrogen from BAP, and phenolic-OH end groups of the oligo(BAP), confirmed using 1H NMR and FT-IR analyses. The oligomer backbone possessed phenylene and oxyphenylene repeat units, and the resulting oligomer was highly soluble in common organic solvents such as acetone, CHCl3, 1,4-dioxane, N,N-dimethylformamide (DMF), tetrahydrofurane (THF) and dimethylsulfoxide (DMSO). Oligo(BAP) was thermally stable and exhibited 5 % and 50 % mass loss determined by thermogravimetric analysis at 247°C and 852°C, respectively.

Acknowledgements.

Ersen Gokturk would like to acknowledge the Turkish Ministry of National Education for his Ph.D. scholarship.

References

Cheraghi, B., Fakhari, A. R., Borhani, S., & Entezami, A. A. (2009). Chemical and electrochemical deposition of conducting polyaniline on lead. Journal of Electroanalytical Chemistry, 626, 116–122. DOI: 10.1016/j.jelechem.2008.11.011.10.1016/j.jelechem.2008.11.011Suche in Google Scholar

Coates, J. (2000). Interpretation of infrared spectra, a practical approach. In R. A. Meyers (Ed.), Encyclopedia of analytical chemistry (pp. 10815–10837). Chichester, UK: Wiley.Suche in Google Scholar

Dordick, J. S., Marletta, M. A., & Klibanov, A. M. (1987). Polymerization of phenols catalyzed by peroxidase in nonaqueous media. Biotechnology and Bioengineering, 30, 31–36. DOI: 10.1002/bit.260300106.10.1002/bit.260300106Suche in Google Scholar

Eker, B., Zagorevski, D., Zhu, G. G., Linhardt, R. J., & Dordick, J. S. (2009). Enzymatic polymerization of phenols in room temperature ionic liquids. Journal of Molecular Catalysis B: Enzymatic, 59, 177–184. DOI: 10.1016/j.molcatb.2009.02. 018.10.1016/j.molcatb.2009.02.018Suche in Google Scholar

Ghoul, M., & Chebil, M. (2012) Enzymatic polymerization of phenolic compounds by oxidoreductases. Amsterdam, The Netherlands: Springer.10.1007/978-94-007-3919-2Suche in Google Scholar

Goretzki, C., & Ritter, H. (1998). Enzymatic oxidative polymerization of aminochalcones by use of horseradish peroxidase. Macromolecular Chemistry and Physics, 199, 1019–1024. DOI: 10.1002/(SICI)1521-3935(19980601)199:6<1019::AID-MACP1019>3.0.œ;2-5.10.1002/(SICI)1521-3935(19980601)199:6<1019::AID-MACP1019>3.0.œ;2-5Suche in Google Scholar

Ikeda, R., Sugihara, J., Uyama, H., & Kobayashi, S. (1998). Enzymatic oxidative polymerization of 4-hydroxybenzoic acid derivatives to poly(phenylene oxide)s. Polymer International, 47, 295–301. DOI: 10.1002/(SICI)1097-0126(199811) 47:3<295::AID-PI7>3.0.CO;2-W.10.1002/(SICI)1097-0126(199811)47:3<295::AID-PI7>3.0.CO;2-WSuche in Google Scholar

Kaya, İ., & Gül, M. (2004). Synthesis, characterization and thermal degradation of oligo-2-[(4-fluorophenyl) imino methylene] phenol and some of its oligomer-metal complexes. European Polymer Journal, 40, 2025–2032. DOI: 10.1016/j. eurpolymj.2004.05.023.10.1016/j.eurpolymj.2004.05.023Suche in Google Scholar

Kobayashi, S., & Higashimura, H. (2003). Oxidative polymerization of phenols revisited. Progress in Polymer Science, 28, 1015–1048. DOI: 10.1016/s0079-6700(03)00014-5.10.1016/s0079-6700(03)00014-5Suche in Google Scholar

Kumbul, A., Gokturk, E., Turac, E., & Sahmetlioglu, E. (2015). Enzymatic oxidative polymerization of para-imine functionalized phenol catalyzed by horseradish peroxidase. Polymers for Advanced Technologies, 26, 1123–1129. DOI: 10.1002/pat.3544.10.1002/pat.3544Suche in Google Scholar

Kupriyanovich, Y. N., Sukhov, B. G., Medvedeva, S. A., Mikhaleva, A. I., Vakul’skaya, T. I., Myachina, G. F., & Trofimov, B. A. (2008). Peroxidase-catalysed synthesis of electroconductive polypyrrole. Mendeleev Communications, 18, 56–58. DOI: 10.1016/j.mencom.2008.01.021.10.1016/j.mencom.2008.01.021Suche in Google Scholar

Liu, W., Bian, S. P., Li, L., Samuelson, L., Kumar, J., & Tripathy, S. (2000). Enzymatic synthesis of photoactive poly(4-phenylazophenol). Chemistry of Materials, 12, 1577–1584. DOI: 10.1021/cm000072p.10.1021/cm000072pSuche in Google Scholar

Mita, N., Tawaki, S. I., Uyama, H., & Kobayashi, S. (2002). Enzymatic oxidative polymerization of phenol in an aqueous solution in the presence of a catalytic amount of cyclodextrin. Macromolecular Bioscience, 2, 127–130. DOI: 10.1002/1616-5195(20020401)2:3<127::AID-MABI127>3.0.CO;2-4.10.1002/1616-5195(20020401)2:3<127::AID-MABI127>3.0.CO;2-4Suche in Google Scholar

Moulay, S. (2009). Polymers with dihydroxy/dialkoxybenzene moieties. Comptes Rendus Chimie, 12, 577–601. DOI: 10. 1016/j.crci.2008.05.011.10.1016/j.crci.2008.05.011Suche in Google Scholar

Nabid, M. R., & Entezami, A. A. (2003a). Enzymatic synthesis and characterization of a water-soluble, conducting poly(o-toluidine). European Polymer Journal, 39, 1169–1175. DOI: 10.1016/s0014-3057(02)00379-8.10.1016/s0014-3057(02)00379-8Suche in Google Scholar

Nabid, M. R., & Entezami, A. A. (2003b). Synthesis of water-soluble and conducting poly(2-ethylaniline) by using horseradish peroxidase. Iranian Polymer Journal, 12, 401–406.Suche in Google Scholar

Narayan, A. V., & Pushpa, A. (2012). Enzyme based processes for removal of phenol from waste water: Current status and future challenges. Journal of Environmental Research and Development, 7, 724–728.Suche in Google Scholar

Pradeep, N. V., Anupama, A., & Hampannavar, U. S. (2012). Polymerization of phenol using free and immobilized horseradish peroxidase. Journal of Environment and Earth Science, 2(1), 31–36.Suche in Google Scholar

Shan, J. N., Han, L. Y., Bai, F. L., & Cao, S. K. (2003). Enzymatic polymerization of aniline and phenol derivatives catalyzed by horseradish peroxidase in dioxane(II). Polymers for Advanced Technologies, 14, 330–336. DOI: 10.1002/pat.316.10.1002/pat.316Suche in Google Scholar

Stuart, B. H. (2004). Infrared spectroscopy: Fundamentals and applications. Chichester, UK: Wiley. DOI: 10.1002/0470011149.10.1002/0470011149Suche in Google Scholar

Tanaka, T., Takahashi, M., Hagino, H., Nudejima, S. I., Usui, H., Fujii, T., & Taniguchi, M. (2010). Enzymatic oxidative polymerization of methoxyphenols. Chemical Engineering Science, 65, 569–573. DOI: 10.1016/j.ces.2009.05.041.10.1016/j.ces.2009.05.041Suche in Google Scholar

Tonami, H., Uyama, H., Kobayashi, S., Rettig, K., & Ritter, H. (1999). Chemoenzymatic synthesis of a poly(hydroquinone). Macromolecular Chemistry and Physics, 200, 1998–2002. DOI: 10.1002/(SICI)1521-3935(19990901)200:9<1998::AID-MACP1998>3.0.CO;2-6.10.1002/(SICI)1521-3935(19990901)200:9<1998::AID-MACP1998>3.0.CO;2-6Suche in Google Scholar

Turac, E., Surme, Y., Sahmetlioglu, E., Varol, R., Narin, I., & Toppare, L. (2008). Synthesis and characterization of water-soluble oligosalicylaldehyde-sulfanilic acid and its Cu(II), Co(II), Pb(II) complexes. Journal of Applied Polymer Science, 110, 564–568. DOI: 10.1002/app.28650.10.1002/app.28650Suche in Google Scholar

Uyama, H., Kurioka, H., Kaneko, I., & Kobayashi, S. (1994). Synthesis of a new family of phenol resin by enzymatic oxidative polymerization. Chemical Letters, 23, 423–426. DOI: 10.1246/cl.1994.423.10.1246/cl.1994.423Suche in Google Scholar

Uyama, H., Kurioka, H., Sugihara, J., Komatsu, I., & Kobayashi, S. (1997). Oxidative polymerization of p-alkylphenols catalyzed by horseradish peroxidase. Journal of Polymer Science Part A: Polymer Chemistry, 35, 1453–1459. DOI: 10.1002/(SICI)1099-0518(199706)35:8<1453::AID-POLA14>3.0.CO;2-6.10.1002/(SICI)1099-0518(199706)35:8<1453::AID-POLA14>3.0.CO;2-6Suche in Google Scholar

Uyama, H., Lohavisavapanich, C., Ikedia, R., & Kobayashi, S. (1998). Chemoselective polymerization of a phenol derivative having a methacryl group by peroxidase catalyst. Macromolecules, 31, 554–556. DOI: 10.1021/ma971510p.10.1021/ma971510pSuche in Google Scholar

Uyama, H., & Kobayashi, S. (2002). Enzyme-catalyzed polymerization to functional polymers. Journal of Molecular Catalysis B: Enzymatic, 19, 117–127. DOI: 10.1016/s1381-1177(02)00158-3.10.1016/s1381-1177(02)00158-3Suche in Google Scholar

Vietch, N. C. (2004). Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry, 65, 249–259. DOI: 10.1016/j.phytochem.2003.10.022.10.1016/j.phytochem.2003.10.022Suche in Google Scholar

Wagner, P., Aubert, P. H., Lutsen, L., & Vanderzande, D. (2002). Conjugated polymers based on new thienylene – PPV derivatives for solar cell applications. Electrochemistry Communications, 4, 912–916. DOI: 10.1016/s1388-2481(02)00487-3.10.1016/s1388-2481(02)00487-3Suche in Google Scholar

Xu, J. X., & Wang, R. C. (2010). Selective alkylation of aminophenols. ARKIVOC, 2010, 293–299.10.3998/ark.5550190.0011.927Suche in Google Scholar

Wuts, P. G. M., & Greene, T. W. (2006). Greene’s protective groups in organic synthesis (4th ed.). New York, NY, USA: Wiley. DOI: 10.1002/0470053488.10.1002/0470053488Suche in Google Scholar

Zhang, L., Zhang, Y. D., Xue, Y. Y., Duan, H., & Cui, Y. C. (2013). Enzymatic synthesis of soluble phenol polymer in water using anionic surfactant as additive. Polymer International, 62, 1277–1282. DOI: 10.1002/pi.4411.10.1002/pi.4411Suche in Google Scholar

Zheng, K., Zhang, L., Gao, Y. H., Wu, Y. F., Zhao, W. S., & Cui, Y. C. (2015). Enzymatic oxidative polymerization of pyrogallic acid for preparation of hindered phenol antioxidant. Journal of Applied Polymer Science, 132. DOI: 10.1002/app.41591. (in press)10.1002/app.41591Suche in Google Scholar

Received: 2015-7-31
Revised: 2015-10-6
Accepted: 2015-10-7
Published Online: 2016-2-11
Published in Print: 2016-5-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Original Paper
  2. Preparation and characterisation of gelatine hydrogels predisposed to use as matrices for effective immobilisation of biocatalystst
  3. Original Paper
  4. Photocatalytic reduction of nitro aromatic compounds to amines using a nanosized highly active CdS photocatalyst under sunlight and blue LED irradiation
  5. Original Paper
  6. Synthesis of butyrate using a heterogeneous catalyst based on polyvinylpolypyrrolidone
  7. Original Paper
  8. Behaviour of selected pesticide residues in blackcurrants (Ribes nigrum) during technological processing monitored by liquid-chromatography tandem mass spectrometry
  9. Original Paper
  10. Influence of solvents and novel extraction methods on bioactive compounds and antioxidant capacity of Phyllanthus amarus
  11. Original Paper
  12. Investigation of phytochemicals and antioxidant capacity of selected Eucalyptus species using conventional extraction
  13. Original Paper
  14. Innovative approach to treating waste waters by a membrane capacitive deionisation system
  15. Original Paper
  16. Liquid—liquid equilibria of ternary systems of 1-hexene/hexane and extraction solvents
  17. Original Paper
  18. Design of extractive distillation process with mixed entraineri‡
  19. Original Paper
  20. Kinetic study of non-reactive iron removal from iron-gall inks
  21. Original Paper
  22. Chemoenzymatic polycondensation of para-benzylamino phenol
  23. Original Paper
  24. Copper corrosion behaviour in acidic sulphate media in the presence of 5-methyl-lH-benzotriazole and 5-chloro-lH-benzotriazole
  25. Original Paper
  26. Synthesis of new 5-bromo derivatives of indole and spiroindole phytoalexins
  27. Original Paper
  28. Design, synthesis and anti-mycobacterial evaluation of some new iV-phenylpyrazine-2-carboxamides
  29. Short Communication
  30. Convenient amidation of carboxyl group of carboxyphenylboronic acids
  31. Short Communication
  32. A novel intramolecular reversible reaction between the hydroxyl group and isobutenylene chain in a cyclophane-type macrocycle
  33. Erratum
  34. Erratum to “Adriana Bakalova, Boryana Nikolova-Mladenova, Rossen Buyukliev, Emiliya Cherneva, Georgi Momekov, Darvin Ivanov: Synthesis, DFT calculations and characterisation of new mixed Pt(II) complexes with 3-thiolanespiro-5′-hydantoin and 4-thio-1H-tetrahydropyranspiro-5′-hydantoin”, Chemical Papers 70 (1) 93–100 (2016)*
  35. Erratum
  36. Erratum to “Martyna Rzelewska, Monika Baczyńska, Magdalena Regel-Rosocka, Maciej Wiśniewski: Trihexyl(tetradecyl)phosphonium bromide as extractant for Rh(III), Ru(III) and Pt(IV) from chloride solutions”, Chemical Papers 70 (4) 454–460 (2016)*
Heruntergeladen am 28.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0242/pdf
Button zum nach oben scrollen