Startseite Lebenswissenschaften Investigation of phytochemicals and antioxidant capacity of selected Eucalyptus species using conventional extraction
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of phytochemicals and antioxidant capacity of selected Eucalyptus species using conventional extraction

  • Deep Jyoti Bhuyan EMAIL logo , Quan V. Vuong , Anita C. Chalmers , Ian A. van Altena , Michael C. Bowyer und Christopher J. Scarlett
Veröffentlicht/Copyright: 11. Februar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Eucalyptus species have found their place in traditional medicine and pharmacological research and they have also been shown to possess a large number of phenolic compounds and antioxidants. The present study sought to implement conventional extraction to yield maximal total phenolic content (TPC), total flavonoid content (TFC), proanthocyanidins, antioxidants, and saponins from E. robusta using different solvents. The most suitable extraction solvent was further employed for extracting phytochemicals from E. saligna, E. microcorys, and E. globulus to select the Eucalyptus species with the greatest bioactive compound content. The results emphasised the efficiency of water in extracting TPC ((150.60 ± 2.47) mg of gallic acid equivalents per g), TFC ((38.83 ± 0.23) mg of rutin equivalents per g), proanthocyanidins ((5.14 ± 0.77) mg of catechin equivalents per g), and antioxidants ABTS ((525.67 ± 1.99) mg of trolox equivalents (TE) per g), DPPH ((378.61 ± 4.72) mg of TE per g); CUPRAC ((607.43 ± 6.69) mg of TE per g) from E. robusta. Moreover, the aqueous extract of E. robusta had the highest TPC, TFC and antioxidant values among the other Eucalyptus species tested. These findings highlighted the efficiency of conventional extraction in extracting natural bioactive compounds from Eucalyptus species for pharmaceutical and nutraceutical applications.

Acknowledgements.

The authors wish to acknowledge the funding support received from the following: Ramaciotti Foundation (ES2012/0104), and the University of Newcastle. The authors also wish to express their gratitude to Brad Potts and Paul Tilyard from the School of Biological Science, University of Tasmania, Australia for providing the E. globulus sample and for their valuable comments on the manuscript.

References

Almeida, I. F., Fernandes, E., Lima, J. L. F. C., Valentão, P., Andrade, P. B., Seabra, R. M., Costa, P. C., & Bahia, M. F. (2009). Oxygen and nitrogen reactive species are effectively scavenged by Eucalyptus globulus leaf water extract. Journal of Medicinal Food, 12, 175–183. DOI: 10.1089/jmf.2008.0046.10.1089/jmf.2008.0046Suche in Google Scholar

Alothman, M., Bhat, R., & Karim, A. A. (2009). Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chemistry, 115, 785–788. DOI: 10.1016/j.foodchem.2008.12.005.10.1016/j.foodchem.2008.12.005Suche in Google Scholar

Al-Sayed, E., Singab, A. N., Ayoub, N., Martiskainen, O., Sinkkonen, J., & Pihlaja, K. (2012). HPLC-PDA-ESI-MS/MS profiling and chemopreventive potential of Eucalyptus gomphocephala DC. Food Chemistry, 133, 1017–1024. DOI: 10.1016/j.foodchem.2011.09.036.10.1016/j.foodchem.2011.09.036Suche in Google Scholar

Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52, 7970–7981. DOI: 10.1021/jf048741x.10.1021/jf048741xSuche in Google Scholar

Arnao, M. B., Cano, A., & Acosta, M. (2001). The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chemistry, 73, 239–244. DOI: 10.1016/s0308-8146(00)00324-1.10.1016/s0308-8146(00)00324-1Suche in Google Scholar

Arvayo-Enríquez, H., Mondaca-Fernández, I., Gortárez-Moroyoqui, P., López-Cervantes, J., & Rodríguez-Ramírez, R. (2013). Carotenoids extraction and quantification: a review. Analytical Methods, 5, 2916–2924. DOI: 10.1039/c3ay26295b.10.1039/c3ay26295bSuche in Google Scholar

Ashour, H. M. (2008). Antibacterial, antifungal, and anticancer activities of volatile oils and extracts from stems, leaves, and flowers of Eucalyptus sideroxylon and Eucalyptus torquata. Cancer Biology & Therapy, 7, 399–403. DOI: 10.4161/cbt.7.3.5367.10.4161/cbt.7.3.5367Suche in Google Scholar

Bhuyan, D. J., Van Vuong, Q., Chalmers, A. C., van Altena, I. A., Bowyer, M. C., & Scarlett, C. J. (2015). Microwave-assisted extraction of Eucalyptus robusta leaf for the optimal yield of total phenolic compounds. Industrial Crops and Products, 69, 290–299. DOI: 10.1016/j.indcrop.2015.02.044.10.1016/j.indcrop.2015.02.044Suche in Google Scholar

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT – Food Science and Technology, 28, 25—30. DOI: 10.1016/s0023-6438(95)80008-5.10.1016/s0023-6438(95)80008-5Suche in Google Scholar

Broadhurst, R. B., & Jones, W. T. (1978). Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture, 29, 788–794. DOI: 10.1002/jsfa.2740290908.10.1002/jsfa.2740290908Suche in Google Scholar

Cadahía, E., Conde, E., García-Vallejo, M. C., & Fernández de Simón, B. (1997). High pressure liquid chromatographic analysis of polyphenols in leaves of Eucalyptus camaldulensis, E. globulus and E. rudis: Proanthocyanidins, ellagitannins and flavonol glycosides. Phytochemical Analysis, 8, 78–83. DOI: 10.1002/(SICI)1099-1565(199703)8:2<78::AIDPCA335>3.0.C0;2-O.10.1002/(SICI)1099-1565(199703)8:2<78::AIDPCA335>3.0.C0;2-OSuche in Google Scholar

Cheok, C. Y., Salman, H. A. K., & Sulaiman, R. (2014). Extraction and quantification of saponins: A review. Food Research International, 59, 16–40. DOI: 10.1016/j.foodres.2014.01.057.10.1016/j.foodres.2014.01.057Suche in Google Scholar

Dahmoune, F., Spigno, G., Moussi, K., Remini, H., Cherbal, A., & Madani, K. (2014). Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Industrial Crops and Products, 61, 31–40. DOI: 10.1016/j.indcrop.2014.06.035.10.1016/j.indcrop.2014.06.035Suche in Google Scholar

Dhanani, T., Shah, S., Gajbhiye, N. A., & Kumar, S. (2013). Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arabian Journal of Chemistry. DOI: 10.1016/j.arabjc.2013.02.015. (in press)10.1016/j.arabjc.2013.02.015Suche in Google Scholar

Domingues, R. M. A., Oliveira, E. L. G., Freire, C. S. R., Couto, R. M., Simões, P. C., Neto, C. P., Silvestre, A. J. D., & Silva, C. M. (2012). Supercritical fluid extraction of Eucalyptus globulus bark – A promising approach for triterpenoid production. International Journal of Molecular Sciences, 13, 7648–7662. DOI: 10.3390/ijms13067648.10.3390/ijms13067648Suche in Google Scholar

Fu, L., Xu, B. T., Xu, X. R., Qin, X. S., Gan, R. Y., & Li, H. B. (2010). Antioxidant capacities and total phenolic contents of 56 wild fruits from South China. Molecules, 15, 8602–8617. DOI: 10.3390/molecules15128602.10.3390/molecules15128602Suche in Google Scholar

Gharekhani, M., Ghorbani, M., & Rasoulnejad, N. (2012). Microwave-assisted extraction of phenolic and flavonoid compounds from Eucalyptus camaldulensis Dehn leaves as compared with ultrasound-assisted extraction. Latin American Applied Research, 42, 305–310.Suche in Google Scholar

Gilles, M., Zhao, J., An, M., & Agboola, S. (2010). Chemical composition and antimicrobial properties of essential oils of three Australian Eucalyptus species. Food Chemistry, 119, 731–737. DOI: 10.1016/j.foodchem.2009.07.021.10.1016/j.foodchem.2009.07.021Suche in Google Scholar

Gupta, D., Shah, M., & Shrivastav, P. (2013). Microwave-assisted extraction of Eucalyptus citriodora oil and comparison with conventional hydro distillation. Middle-East Journal of Scientific Research, 16, 702–705. DOI: 10.5829/idosi.mejsr.2013.16.05.11890.10.5829/idosi.mejsr.2013.16.05.11890Suche in Google Scholar

Habicht, S. D., Kind, V., Rudloff, S., Borsch, C., Mueller, A. S., Pallauf, J., Yang, R. Y., & Krawinkel, M. B. (2011). Quantification of antidiabetic extracts and compounds in bitter gourd varieties. Food Chemistry, 126, 172–176. DOI: 10.1016/j.foodchem.2010.10.094.10.1016/j.foodchem.2010.10.094Suche in Google Scholar

Hiai, S., Oura, H., & Nakajima, T. (1976). Color reaction of some sapogenins and saponins with vanillin and sulfuric acid. Planta Medica, 29, 116–122. DOI: 10.1055/s-0028-1097639.10.1055/s-0028-1097639Suche in Google Scholar

Koleva, I. I., van Beek, T. A., Linssen, J. P. H., de Groot, A., & Evstatieva, L. N. (2002). Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochemical Analysis, 13, 8–17. DOI: 10.1002/pca.611.10.1002/pca.611Suche in Google Scholar PubMed

Konoshima, T., & Takasaki, M. (2002). Chemistry and bioactivity of the non-volatile constituents of eucalyptus. In J. J. W. Coppen (Ed.), Eucalyptus: the genus Eucalyptus (Vol. 22, pp. 269–290). London, UK: Taylor & Francis.10.4324/9780203219430_chapter_12Suche in Google Scholar

Liazid, A., Palma, M., Brigui, J., & Barroso, C. G. (2007). Investigation on phenolic compounds stability during microwave-assisted extraction. Journal of Chromatography A, 1140, 29–34. DOI: 10.1016/j.chroma.2006.11.040.10.1016/j.chroma.2006.11.040Suche in Google Scholar PubMed

Ma, X., Zhou, X. Y., Qiang, Q. Q., & Zhang, Z. Q. (2014). Ultrasound-assisted extraction and preliminary purification of proanthocyanidins and chlorogenic acid from almond (Prunus dulcis) skin. Journal of Separation Science, 37, 1834–1841. DOI: 10.1002/jssc.201400070.10.1002/jssc.201400070Suche in Google Scholar PubMed

Majinda, R. R. T. (2012). Extraction and isolation of saponins. In S. D. Sarker, & L. Nahar (Eds.), Natural products isolation (Methods in Molecular Biology series, Vol. 864, pp. 415–426): Humana Press. DOI: 10.1007/978-1-61779-624-1_16.10.1007/978-1-61779-624-1_16Suche in Google Scholar PubMed

Mota, I., Rodrigues Pinto, P. C., Novo, C., Sousa, G., Guerreiro, O., Guerra, Á. R., Duarte, M. F., & Rodrigues, A. E. (2012). Extraction of polyphenolic compounds from Eucalyptus globulus bark: Process optimization and screening for biological activity. Industrial & Engineering Chemistry Research, 51, 6991–7000. DOI: 10.1021/ie300103z.10.1021/ie300103zSuche in Google Scholar

Mulyaningsih, S., Sporer, F., Zimmermann, S., Reichling, J., & Wink, M. (2010). Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine, 17, 1061–1066. DOI: 10.1016/j.phymed.2010.06.018.10.1016/j.phymed.2010.06.018Suche in Google Scholar PubMed

Ollanketo, M., Peltoketo, A., Hartonen, K., Hiltunen, R., & Riekkola, M. L. (2002). Extraction of sage (Salvia officinalis L.) by pressurized hot water and conventional methods: antioxidant activity of the extracts. European Food Research & Technology, 215, 158–163. DOI: 10.1007/s00217-002-0545-7.10.1007/s00217-002-0545-7Suche in Google Scholar

Olszewska, M. A. (2011). In vitro antioxidant activity and total phenolic content of the inflorescences, leaves and fruits of Sorbus torminalis (L.) Crantz. Acta Poloniae Pharmaceutica, 68, 945–953.Suche in Google Scholar

Puttaswamy, N. Y., Gunashekara, D. R., Ahmed, F., & Urooj, A. (2014). Phytochemical composition and in vitro anti-hyperglycemic potency of Eucalyptus tereticornis bark. Indian Journal of Nutrition, 1(1), 102.Suche in Google Scholar

Ross, C. F., Hoye, C., Jr., & Fernandez-Plotka, V. C. (2011). Influence of heating on the polyphenolic content and antioxidant activity of grape seed flour. Journal of Food Science, 76, C884–C890. DOI: 10.1111/j.1750-3841.2011.02280.x.10.1111/j.1750-3841.2011.02280.xSuche in Google Scholar PubMed

Rozefelds, A. C. (1996). Eucalyptus phylogeny and history: a brief summary. Tasforests, 8, 15–26.Suche in Google Scholar

Saeed, N., Khan, M. R., & Shabbir, M. (2012). Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complementary & Alternative Medicine, 12, 221. DOI: 10.1186/1472-6882-12-221.10.1186/1472-6882-12-221Suche in Google Scholar PubMed PubMed Central

Santos, S. A. O., Freire, C. S. R., Domingues, M. R. M., Silvestre, A. J. D., & Neto, C. P. (2011). Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. bark by high-performance liquid chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 59, 9386–9393. DOI: 10.1021/jf201801q.10.1021/jf201801qSuche in Google Scholar PubMed

Santos, S. A. O., Villaverde, J. J., Freire, C. S. R., Domingues, M. R. M., Neto, C. P., & Silvestre, A. J. D. (2012). Phenolic composition and antioxidant activity of Eucalyptus grandis, E. urograndis (E. grandis × E. urophylla) and E. maidenii bark extracts. Industrial Crops and Products, 39, 120–127. DOI: 10.1016/j.indcrop.2012.02.003.10.1016/j.indcrop.2012.02.003Suche in Google Scholar

Sidana, J., Singh, S., Arora, S. K., Foley, W. J., & Singh, I. P. (2011). Formylated phloroglucinols from Eucalyptus loxophleba foliage. Fitoterapia, 82, 1118–1122. DOI: 10.1016/j.fitote.2011.07.009.10.1016/j.fitote.2011.07.009Suche in Google Scholar PubMed

Škerget, M., Kotnik, P., Hadolin, M., Rižner Hraš, A., Simonič, M., & Knez, Ž. (2005). Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry, 89, 191–198. DOI: 10.1016/j.foodchem.2004.02.025.10.1016/j.foodchem.2004.02.025Suche in Google Scholar

Sultana, B., Anwar, F., & Ashraf, M. (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 14, 2167–2180. DOI: 10.3390/molecules14062167.10.3390/molecules14062167Suche in Google Scholar PubMed PubMed Central

Tan, S. P., Parks, S. E., Stathopoulos, C. E., & Roach, P. D. (2014). Extraction of flavonoids from bitter melon. Food and Nutrition Sciences, 5, 458–465. DOI: 10.4236/fns.2014.55054.10.4236/fns.2014.55054Suche in Google Scholar

Topçu, G., Yapar, G., Türkmen, Z., Gören, A. C., Öksüz, S., Schilling, J. K., & Kingston, D. G. I. (2011). Ovarian antiproliferative activity directed isolation of triterpenoids from fruits of Eucalyptus camaldulensis Dehnh. Phytochemistry Letters, 4, 421–425. DOI: 10.1016/j.phytol.2011.05.002.10.1016/j.phytol.2011.05.002Suche in Google Scholar

Vázquez, G., Fontenla, E., Santos, J., Freire, M. S., González-Álvarez, J., & Antorrena, G. (2008). Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Industrial Crops and Products, 28, 279–285. DOI: 10.1016/j.indcrop.2008.03.003.10.1016/j.indcrop.2008.03.003Suche in Google Scholar

Vázquez, G., Santos, J., Freire, M. S., Antorrena, G., & González-Álvarez, J. (2012). Extraction of antioxidants from eucalyptus (Eucalyptus globulus) bark. Wood Science and Technology, 46, 443–457. DOI: 10.1007/s00226-011-0418-y.10.1007/s00226-011-0418-ySuche in Google Scholar

Vuong, Q. V., Chalmers, A. C., Jyoti Bhuyan, D., Bowyer, M. C., & Scarlett, C. J. (2015a). Botanical, phytochemical, and anticancer properties of the Eucalyptus species. Chemistry & Biodiversity, 12, 907–924. DOI: 10.1002/cbdv.201400327.10.1002/cbdv.201400327Suche in Google Scholar PubMed

Vuong, Q. V., Hirun, S., Chuen, T. L. K., Goldsmith, C. D., Munro, B., Bowyer, M. C., Chalmers, A. C., Sakoff, J. A., Phillips, P. A., & Scarlett, C. J. (2015b). Physicochemical, antioxidant and anti-cancer activity of a Eucalyptus robusta (Sm.) leaf aqueous extract. Industrial Crops and Products, 64, 167–174. DOI: 10.1016/j.indcrop.2014.10.061.10.1016/j.indcrop.2014.10.061Suche in Google Scholar

Yao, L. H., Jiang, Y. M., Shi, J., Tomás-Barberán, F. A., Datta, N., Singanusong, R., & Chen, S. S. (2004). Flavonoids in food and their health benefits. Plant Foods for Human Nutrition, 59, 113–122. DOI: 10.1007/s11130-004-0049-7.10.1007/s11130-004-0049-7Suche in Google Scholar PubMed

Zhao, Y. H., Wang, X. M., Wang, H., Liu, T. X., & Xin, Z. H. (2014). Two new noroleanane-type triterpene saponins from the methanol extract of Salicornia herbacea. Food Chemistry, 151, 101–109. DOI: 10.1016/j.foodchem.2013.11.030.10.1016/j.foodchem.2013.11.030Suche in Google Scholar PubMed

Zuorro, A., & Lavecchia, R. (2013). Optimization of enzyme-assisted lycopene extraction from tomato processing waste. Advanced Materials Research, 800, 173–176. DOI: 10.4028/www.scientific.net/amr.800.173.10.4028/www.scientific.net/amr.800.173Suche in Google Scholar

Zuorro, A., Maffei, G., & Lavecchia, R. (2014). Effect of solvent type and extraction conditions on the recovery of phenolic compounds from artichoke waste. Chemical Engineering Transactions, 39, 463–468. DOI: 10.3303/cet1439078.10.3303/cet1439078Suche in Google Scholar

Received: 2015-6-29
Revised: 2015-9-21
Accepted: 2015-10-10
Published Online: 2016-2-11
Published in Print: 2016-5-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Original Paper
  2. Preparation and characterisation of gelatine hydrogels predisposed to use as matrices for effective immobilisation of biocatalystst
  3. Original Paper
  4. Photocatalytic reduction of nitro aromatic compounds to amines using a nanosized highly active CdS photocatalyst under sunlight and blue LED irradiation
  5. Original Paper
  6. Synthesis of butyrate using a heterogeneous catalyst based on polyvinylpolypyrrolidone
  7. Original Paper
  8. Behaviour of selected pesticide residues in blackcurrants (Ribes nigrum) during technological processing monitored by liquid-chromatography tandem mass spectrometry
  9. Original Paper
  10. Influence of solvents and novel extraction methods on bioactive compounds and antioxidant capacity of Phyllanthus amarus
  11. Original Paper
  12. Investigation of phytochemicals and antioxidant capacity of selected Eucalyptus species using conventional extraction
  13. Original Paper
  14. Innovative approach to treating waste waters by a membrane capacitive deionisation system
  15. Original Paper
  16. Liquid—liquid equilibria of ternary systems of 1-hexene/hexane and extraction solvents
  17. Original Paper
  18. Design of extractive distillation process with mixed entraineri‡
  19. Original Paper
  20. Kinetic study of non-reactive iron removal from iron-gall inks
  21. Original Paper
  22. Chemoenzymatic polycondensation of para-benzylamino phenol
  23. Original Paper
  24. Copper corrosion behaviour in acidic sulphate media in the presence of 5-methyl-lH-benzotriazole and 5-chloro-lH-benzotriazole
  25. Original Paper
  26. Synthesis of new 5-bromo derivatives of indole and spiroindole phytoalexins
  27. Original Paper
  28. Design, synthesis and anti-mycobacterial evaluation of some new iV-phenylpyrazine-2-carboxamides
  29. Short Communication
  30. Convenient amidation of carboxyl group of carboxyphenylboronic acids
  31. Short Communication
  32. A novel intramolecular reversible reaction between the hydroxyl group and isobutenylene chain in a cyclophane-type macrocycle
  33. Erratum
  34. Erratum to “Adriana Bakalova, Boryana Nikolova-Mladenova, Rossen Buyukliev, Emiliya Cherneva, Georgi Momekov, Darvin Ivanov: Synthesis, DFT calculations and characterisation of new mixed Pt(II) complexes with 3-thiolanespiro-5′-hydantoin and 4-thio-1H-tetrahydropyranspiro-5′-hydantoin”, Chemical Papers 70 (1) 93–100 (2016)*
  35. Erratum
  36. Erratum to “Martyna Rzelewska, Monika Baczyńska, Magdalena Regel-Rosocka, Maciej Wiśniewski: Trihexyl(tetradecyl)phosphonium bromide as extractant for Rh(III), Ru(III) and Pt(IV) from chloride solutions”, Chemical Papers 70 (4) 454–460 (2016)*
Heruntergeladen am 28.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0237/html
Button zum nach oben scrollen