Startseite Synthesis, characterisation and photocatalytic activity of Ag+- and Sn2+-substituted KSbTeO6
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis, characterisation and photocatalytic activity of Ag+- and Sn2+-substituted KSbTeO6

  • Ravinder Guje , Prathapuram Shrujana , Naveen Kumar Veldurthi , Ravi Gundeboina , Nageshwar Rao Kappera und Vithal Muga EMAIL logo
Veröffentlicht/Copyright: 12. Dezember 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Ag+- and Sn2+-substituted KSbTeO6 were prepared by a facile ion-exchange method at ambient temperature. All the samples were characterised by scanning electron microscopy, energydispersive spectra, thermogravimetric analysis, powder X-ray diffraction, Raman spectra and UV-VIS diffuse reflectance spectra. Both Sn2+- and Ag+-substituted KSbTeO6 were crystallised in a cubic lattice with the Fd3̅m space group. The band-gap energy of all the samples was deduced from their UV-VIS diffuse reflectance spectral profiles. The visible light-induced photocatalytic oxidation of the methylene blue (MB) dye was examined in the presence of all the as-prepared materials. The Ag+- and Sn2+-substituted KSbTeO6 exhibited a higher photocatalytic activity than the parent KSbTeO6 in degradation of the MB dye under visible light irradiation.

References

Abe, M., Kotani, T., & Awano, S. (1999). Ion exchange properties of oxides and hydrous oxides of pentavalent metals. In P. A. Williams, & A. Dyer (Eds.), Advances in ion exchange for industry and research (Vol. 239, pp. 199-211). Cambridge, UK: Royal Society of Chemistry.Suche in Google Scholar

Alonso, J. A., Castro, A., Rasines, I., & Turrillas, X. M. (1988). Study of the defect pyrochlores A(SbTe)O6 (A=K, Rb, Cs, Tl). Journal of Materials Science, 23, 4103-4107. DOI: 10.1007/bf01106843.10.1007/BF01106843Suche in Google Scholar

Alonso, J. A., & Turrillas, X. (2005). Location of H+ sites in the fast proton-conductor (H3O)SbTeO6 pyrochlore. Dalton Transactions, 2005, 865-867. DOI: 10.1039/b414705g.10.1039/b414705gSuche in Google Scholar

Babel, D., Pausewang, G., & Viebahn, W. (1967). Die Structur einiger Fluoride Oxide und Oxidfluoride AMe2X6. Zeitschrift fuer Naturforschung, Teil B. Anorganische Chemie, Organische Chemie, 22, 1219-1220.Suche in Google Scholar

Boysen, H., Lerch, M., Fernandez-Alonso, F., Krzystyniak, M., Lalowicz, Z. T., Chatzidimitriou-Dreismann, C. A., & Tovar, M. (2012). On the mechanism of proton conductivity in H3OSbTeO6. Journal of Physics and Chemistry of Solids, 73, 808-817. DOI: 10.1016/j.jpcs.2012.02.004.10.1016/j.jpcs.2012.02.004Suche in Google Scholar

Carp, O., Huisnan, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32, 33-177. DOI: 10.1016/j.progsolidstchem.2004.08. 001.Suche in Google Scholar

Castro, A., Rasines, I., & Sanchez-Martos, M. C. (1987).Novel deficient pyrochlores A(MoSb)O6 (A = Rb, Cs).Journal of Materials Science Letters, 6, 1001-1003. DOI: 10.1007/bf01729113.10.1007/BF01729113Suche in Google Scholar

Chiang, Y. M., Birnie, D. P., & Kingery, W. D. (1997). Physical ceramics: Principles for ceramics and engineering. Hoboken, NY, USA: Wiley.Suche in Google Scholar

Darriet, B., Rat, M., Galy, J., & Hagenmuller, P. (1971). Sur quelques nouveaux pyrochlores des systemes MTO3-WO3 and MTO3-TeO3 (M = K, Rb, Cs, Tl; T = Nb, Ta). Materials Research Bulletin, 6, 1305-1315. DOI: 10.1016/0025-5408(71)90129-2. (in French) 10.1016/0025-5408(71)90129-2Suche in Google Scholar

Gong, X., Wu, P. F., Chen, W. J., & Yang, H. X. (1998). Preparation and optical properties of nanocrystallites of RE2Sn2−xB_ xO7 (RE = Sm, Ce; B_ = Fe, Co, Ni; 0.0 ≤ x ≤ 1.0). Journal of Materials Research, 13, 469-474. DOI: 10.1557/jmr.1998.0061.10.1557/JMR.1998.0061Suche in Google Scholar

Harvey, E. J., Whittle, K. R., Lumpkin, G. R., Smith, R. I., & Redfern, S. A. T. (2005). Solid solubilities of (La, Nd)2(Zr,Ti)2O7 phases deduced by neutron diffraction. Journal of Solid State Chemistry, 178, 800-810. DOI: 10.1016/j.jssc.2004.12.030.10.1016/j.jssc.2004.12.030Suche in Google Scholar

Horowitz, H. S., Longo J. M., & Horowitz, H. H. (1983). Oxygen electrocatalysis on some oxide pyrochlores. Journal of the Electrochemical Society, 130, 1851-1859. DOI: 10.1149/1.2120111.10.1149/1.2120111Suche in Google Scholar

Ishibashi, K., Fujishima, A., Watanabe, T., & Hashimoto, K. (2000). Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochemistry Communications, 2, 207-210. DOI: 10.1016/s1388-2481(00)00006-0.10.1016/S1388-2481(00)00006-0Suche in Google Scholar

Khodja, A. A., Sehili, T., Pilichowski, J. F., & Boule, P. J. (2001). Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. Journal of Photochemistry and Photobiology A: Chemistry, 141, 231-239. DOI: 10.1016/s1010-6030(01)00423-3.10.1016/S1010-6030(01)00423-3Suche in Google Scholar

Luan, J. F., Zhao, W., Feng, J. W., Cai, H. L., Zheng, Z., Pan, B. C., Wu, X. S., Zou, Z. G., & Li, Y. M. (2009). Structural, photophysical and photocatalytic properties of novel Bi2AlVO7. Journal of Hazardous Materials, 164, 781-789. DOI: 10.1016/j.jhazmat.2008.08.088.10.1016/j.jhazmat.2008.08.088Suche in Google Scholar

Mączka, M., Knyazev, A. V., Kuznetsov, N. Y., Ptak, M., & Macalik, L. (2011). Raman and IR studies of TaWO5.5, ASbWO6, (A = K, Rb, Cs, Tl), and ASbWO6 ・H2O (A = H, NH4, Li, Na) pyrochlore oxides. Journal of Raman Specroscopy, 42, 529-533. DOI: 10.1002/jrs.2735.10.1002/jrs.2735Suche in Google Scholar

Marschall, R., Soldat, J., & Wark, M. (2013). Enhanced photocatalytic hydrogen generation from barium tantalate composite. Photochemistry & Photobiology Sciences, 12, 671-677. DOI: 10.1039/c2pp25200g.10.1039/C2PP25200GSuche in Google Scholar

Michel, C., Groult, D., & Raveau, B. (1973). Sur de nouveaux pyrochlores ASbWO6 (A = K, Rb, Cs, Tl). Materials Research Bulletin, 8, 201-210. DOI: 10.1016/0025-5408(73)90173-6. (in French) 10.1016/0025-5408(73)90173-6Suche in Google Scholar

Mims, C. A., Jacobson, A. J., Hall, R. B., & Lewandowski, J. T. (1995). Methane oxidative coupling over nonstoichiometric bismuth-tin pyrochlore catalysts. Journal of Catalysis, 153, 197-207. DOI: 10.1006/jcat.1995.1122.10.1006/jcat.1995.1122Suche in Google Scholar

Porat, O., Heremans, C., & Tuller, H. L. (1997). Stability and mixed ionic electronic conduction in Gd2(Ti1−xMox)2O7 under anodic conditions. Solid State Ionics, 94, 75-83. DOI: 10.1016/s0167-2738(96)00586-3.10.1016/S0167-2738(96)00586-3Suche in Google Scholar

Rabenau, A., (1978). Lithium nitride, Li3N, an unusual ionic conductor. Advances in Solid State Physics, 18, 77-108. DOI: 10.1007/bfb0107778.10.1007/BFb0107778Suche in Google Scholar

Ravi, G., Veldurthi, N. K., Prasad, M. D., Muniratnam, N. R., Prasad, G., & Vithal, M. (2013a). Preparation, optical, and photocatalytic studies of defect pyrochlores: KCr0.33W1.67O6 and AxCr0.33W1.67O6 nH2O. Journal of Nanoparticle Research, 15, 1939. DOI: 10.1007/s11051-013-1939-0.10.1007/s11051-013-1939-0Suche in Google Scholar

Ravi, G., Veldurthi, N. K., Palla, S., Velchuri, R., Pola, S., Reddy, J. R., & Vithal, M. (2013b). Synthesis, characterization and photocatalytic activity of KAl0.33W1.67O6 and Sn0.5Al0.33W1.67O6xH2O. Photochemistry and Photobiology, 89, 824-831. DOI: 10.1111/php.12079.10.1111/php.12079Suche in Google Scholar PubMed

Reddy, J. R., Veldurthi, N. K., Palla, S., Ravi, G., Guje, R., & Vithal, M. (2013). Facile ion-exchange synthesis of visible light active Sn-doped defect pyrochlore K0.51Sb2.67O6.26 and study of its photocatalytic activity. Journal of Chemical Technology and Biotechnology. DOI: 10.1002/jctb.4264. (in press) 10.1002/jctb.4264Suche in Google Scholar

Subramanian, M. A., Aravamudan, G., & Subba Rao, G. V. (1983). Oxide pypochlores - a review. Progress in Solid State Chemistry, 15, 55-143. DOI: 10.1016/0079-6786(83)90001-8.10.1016/0079-6786(83)90001-8Suche in Google Scholar

Turrillas, X., Delabouglise, G., & Joubert, J. C. (1986). Ionic conductivity in the new series MSbTeO6 (M = K, Rb, Cs, Tl, Ag). Solid State Ionics, 21, 195-201. DOI: 10.1016/0167-2738(86)90072-x.10.1016/0167-2738(86)90072-XSuche in Google Scholar

Uma, S., Singh, J., & Thakral, V. (2009). Facile room temperature ion-exchange synthesis of Sn2+ incorporated pyrochloretype oxides and their photocatalytic activities. Inorganic Chemistry, 48, 11624-11630. DOI: 10.1021/ic901658w.10.1021/ic901658wSuche in Google Scholar

Vithal, M., Rama Krishna, S., Ravi, G., Palla, S., Velchuri, R., & Pola, S. (2013). Synthesis of Cu2+ and Ag+ doped Na2Ti3O7 by a facile ion-exchange method as visible-lightdriven photocatalysts. Ceramics International, 39, 8429-8439. DOI: 10.1016/j.ceramint.2013.04.025.10.1016/j.ceramint.2013.04.025Suche in Google Scholar

Vogel, A. I. (1989). Textbook of quantitative chemical analysis. Harlow, UK: Longman Group.Suche in Google Scholar

Wang, J. H., Zou, Z. G., & Ye, J. H. (2003). Synthesis, structure and photocatalytic property of a new hydrogen evolving photocatalyst Bi2InTaO7. Materials Science Forum, 423-425, 485-490. DOI: 10.4028/www.scientific.net/MSF.423-425.485.10.4028/www.scientific.net/MSF.423-425.485Suche in Google Scholar

Yu, T. H., & Tuller, H. L. (1996). Ionic conduction and disorder in the Gd2Sn2O7 pyrochlore system. Solid State Ionics, 86, 177-182. DOI: 10.1016/0167-2738(96)00118-x.10.1016/0167-2738(96)00118-XSuche in Google Scholar

Zou, Z. G., Ye, J. H., & Arakawa, H. (2001). Substitution effects of In3+ by Fe3+ on photocatalytic and structural properties of Bi2InNbO7 photocatalysts. Journal of Molecular Catalysis A: Chemical, 168, 289-297. DOI: 10.1016/s1381-1169(00)00545-8.10.1016/S1381-1169(00)00545-8Suche in Google Scholar

Zou, Z. G., & Arakawa, H. (2003). Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 158, 145-162. DOI: 10.1016/s1010-6030(03)00029-7.10.1016/S1010-6030(03)00029-7Suche in Google Scholar

Zou, Z. G., Ye, J. H., & Arakawa, H. (2003). Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst. International Journal of Hydrogen Energy, 28, 663-669. DOI: 10.1016/s0360-3199(02)00159-3 10.1016/S0360-3199(02)00159-3Suche in Google Scholar

Received: 2014-1-18
Revised: 2014-5-14
Accepted: 2014-6-14
Published Online: 2014-12-12
Published in Print: 2015-2-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Selection and design of ionic liquids as solvents in extractive distillation and extraction processes
  2. Analytical procedure for steroid profiling valid for Athlete Biological Passport
  3. Fabrication of paper-based analytical device by silanisation of filter cellulose using alkyltrimethoxysilane coupled with UV radiation
  4. Synthesis, characterisation and photocatalytic activity of Ag+- and Sn2+-substituted KSbTeO6
  5. Dysprosium pertraction through facilitated supported liquid membrane using D2EHPA as carrier
  6. Volatile compounds composition and antioxidant activity of bee pollen collected in Lithuania
  7. Self-penetrating and interpenetrating 3D metal–organic frameworks constructed from 4-(4-carboxyphenoxy)-phthalic acid and N-donor auxiliary ligands
  8. Preparation of ceramic γ-Al2O3–TiO2 nanofiltration membranes for desalination
  9. Promoting effect of group VI metals on Ni/MgO for catalytic growth of carbon nanotubes by ethylene chemical vapour deposition
  10. Microwave-assisted solvent-free synthesis and luminescence properties of 2-substituted-4,5-di(2-furyl)-1H-imidazoles
  11. Synthesis of potential inhibitors of glycosyltransferases representing UDP-GlcNAc
  12. Development of transition state analogue inhibitors for N-acetylglycosyltransferases bearing D-psicoor D-tagatofuranose scaffolds
  13. Efavirenz–eudragit E-100 nanoparticle-loaded aerosol foam for sustained release: in-vitro and ex-vivo evaluation
  14. Photochromic and molecular switching behaviour of Schiff base-containing pyrazolone ring
  15. Improvements to CO2 headspace biodegradability test
  16. Synthesis of corn rootworm pheromones from commercial diols
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0013/html
Button zum nach oben scrollen