Startseite Preparation of ceramic γ-Al2O3–TiO2 nanofiltration membranes for desalination
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation of ceramic γ-Al2O3–TiO2 nanofiltration membranes for desalination

  • Mohsen Khalili , Samad Sabbaghi EMAIL logo und Mohammad Mahdi Zerafat
Veröffentlicht/Copyright: 12. Dezember 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

As one of the most recently developed membrane separation processes, nanofiltration (NF) has found a number of industrial applications. Ceramic NF membranes are also regarded as the appropriate choice in many applications, due to their higher chemical and physical stability. In this study, the rejection of the chloride ion is investigated using bi-layered γ-Al2O3-TiO2 NF membranes based on α-alumina supports. Compression is used in preparation of the supports and sol-gel dip-coating for the top-layer formation. SEM micrographs, XRD, and nitrogen adsorption/desorption isotherms are used for membrane characterisation. The results show that the calcination temperature (600◦C) results in different crystal structures including the brookite phase of TiO2, the γ phase of Al2O3, and a combined phase of aluminium-titanium oxides. The average pore size of the membrane was identified as 1.6 nm using an adsorption/desorption isotherm. The rejection was also studied for the chloride ion, using a cross-flow filtration module. Filtration tests were carried out under different pressures, pH values, and salt concentrations; these showed a smoother behaviour particularly around the isoelectric points (IEPs) due to the dual-layer structure, with the best rejection at pH of approximately 5.

References

Alami-Younssi, S., Larbot, A., Persin, M., Sarrazin, J., & Cot, L. (1995). Rejection of mineral salts on a gamma alumina nanofiltration membrane: Application to environmental process. Journal of Membrane Science, 102, 123-129. DOI: 10.1016/0376-7388(94)00302-f.10.1016/0376-7388(94)00302-FSuche in Google Scholar

Blanc, P., Larbot, A., Palmeri, J., Lopez, M., & Cot, L. (1998). Hafnia ceramic nanofltration membranes. Part I: Preparation and characterization. Journal of Membrane Science, 149, 151-161. DOI: 10.1016/s0376-7388(98)00154-9.10.1016/S0376-7388(98)00154-9Suche in Google Scholar

Burggraaf, A. J., & Cot, L. (1996). Fundamentals of inorganic membrane science and technology. Amsterdam, The Netherland: Elsevier. Suche in Google Scholar

Combe, C., Guizard, C., Aimar, E., & Sanchez, V. (1997). Experimental determination of four characteristics used to predict the retention of a ceramic nanofiltration membrane. Journal of Membrane Science, 129, 147-160. DOI: 10.1016/s0376-7388(96)00290-6. 10.1016/S0376-7388(96)00290-6Suche in Google Scholar

de Lint, W. B. S., & Benes, N. E. (2005). Separation properties of γ-alumina nanofiltration membranes compared to charge regulation model predictions. Journal of Membrane Science, 248, 149-159. DOI: 10.1016/j.memsci.2004.08.026. 10.1016/j.memsci.2004.08.026Suche in Google Scholar

de Lint, W. B. S., Zivkovic, T., Benes, N. E., Bouwmeester, H. J. M., & Blank, D. H. A. (2006). Electrolyte retention of supported bi-layered nanofiltration membranes. Journal of Membrane Science, 277, 18-27. DOI: 10.1016/j.memsci.2005. 10.004.Suche in Google Scholar

Labbez, C., Fievet, P., Szymczyk, A., Thomas, F., Simon, C., Vidonne, A., Pagetti, J., & Foissy, A. (2002a). A comparison of membrane charge of a low nanofiltration membrane determined from ionic retention and tangential streaming potential measurements. Desalination, 147, 223-229. DOI: 10.1016/s0011-9164(02)00539-8, 10.1016/S0011-9164(02)00539-8Suche in Google Scholar

Labbez, C., Fievet, P., Szymczyk, A., Vidonne, A., Foissy, A., & Pagetti, J. (2002b). Analysis of the salt retention of a titania membrane using the ”DSPM” model: effect of pH, salt concentration and nature. Journal of Membrane Science, 208, 315-329. DOI: 10.1016/s0376-7388(02)00310-1.10.1016/S0376-7388(02)00310-1Suche in Google Scholar

Puhlfürß, P., Voigt, A., Weber, R., & Morbé, M. (2000). Microporous TiO2 membranes with a cut off <500 Da. Journal of Membrane Science, 174, 123-133. DOI: 10.1016/s0376-7388(00)00380-x.10.1016/S0376-7388(00)00380-XSuche in Google Scholar

Sabbaghi, S., Maleki, R., Shariati-Niassar, M., & Zerafat, M. M. (2012). Modelling chloride ion removal from gas condensates by nanofiltration membrane separation. International Journal of Chemical and Environmental Engineering, 3(1), 30-33.Suche in Google Scholar

Schaep, J., Vandecasteele, C., Peeters, B., Luyten, J., Dotremont, C., & Roels, D. (1999). Characteristics and retention properties of a mesoporous γ-Al2O3 membrane for nanofiltration. Journal of Membrane Science, 163, 229-237. DOI: 10.1016/s0376-7388(99)00163-5.10.1016/S0376-7388(99)00163-5Suche in Google Scholar

Skluzacek, J. M., Tejedor, M. I., & Anderson, M. A. (2006). An iron-modified silica nanofiltration membrane: Effect of solution composition on salt rejection. Microporous and Mesoporous Materials, 94, 288-294. DOI: 10.1016/j.micromeso. 2006.03.043.Suche in Google Scholar

Tsuru, T., Hironaka, D., Yoshioka, T., & Asaeda, M. (2001). Titania membranes for liquid phase separation: effect of surface charge on flux. Separation and Purification Technology, 25, 307-314. DOI: 10.1016/s1383-5866(01)00057-0.10.1016/S1383-5866(01)00057-0Suche in Google Scholar

Vacassy, R., Guizard, C., Thoraval, V., & Cot, L. (1997). Synthesis and characterization of microporous zirconia powders: Application in nanofilters and nanofiltration characteristics. Journal of Membrane Science, 132, 109-118. DOI: 10.1016/s0376-7388(97)00051-3.10.1016/S0376-7388(97)00051-3Suche in Google Scholar

Van Gestel, T., Vandecasteele, C., Buekenhoudt, A., Dotremont, C., Luyten, J., Leysen, R., Van der Burggen, B., & Maes, G. (2002). Salt retention in nanofiltration with multilayer ceramic TiO2 membranes. Journal of Membrane Science, 209, 379-389. DOI: 10.1016/s0376-7388(02)00311-3.10.1016/S0376-7388(02)00311-3Suche in Google Scholar

Weber, R., Chmiel, H., & Mavrov, V. (2003). Characteristics and application of new ceramic nanofiltration membranes. Desalination, 157, 113-125. DOI: 10.1016/s0011-9164(03)00390-4.10.1016/S0011-9164(03)00390-4Suche in Google Scholar

Xu, Q. Y., & Anderson, M. A. (1991). Synthesis of porosity controlled ceramic membranes. Journal of Materials Research, 6, 1073-1081. DOI: 10.1557/jmr.1991.1073.10.1557/JMR.1991.1073Suche in Google Scholar

Yoldas, B. E. (1975). Alumina sol preparation from alkoxides. Ceramic Bulletin, 54, 289-291.Suche in Google Scholar

Zerafat, M. M., Shariati-Niassar, M., Hashemi, S. J., Sabbaghi, S., Ismail, A. F., & Matsuura, T. (2013). Mathematical modelling of nanofiltration for concentrated electrolyte solutions. Desalination, 320, 17-23. DOI: 10.1016/j.desal.2013.04.015 10.1016/j.desal.2013.04.015Suche in Google Scholar

Received: 2014-2-26
Revised: 2014-6-1
Accepted: 2014-6-3
Published Online: 2014-12-12
Published in Print: 2015-2-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Selection and design of ionic liquids as solvents in extractive distillation and extraction processes
  2. Analytical procedure for steroid profiling valid for Athlete Biological Passport
  3. Fabrication of paper-based analytical device by silanisation of filter cellulose using alkyltrimethoxysilane coupled with UV radiation
  4. Synthesis, characterisation and photocatalytic activity of Ag+- and Sn2+-substituted KSbTeO6
  5. Dysprosium pertraction through facilitated supported liquid membrane using D2EHPA as carrier
  6. Volatile compounds composition and antioxidant activity of bee pollen collected in Lithuania
  7. Self-penetrating and interpenetrating 3D metal–organic frameworks constructed from 4-(4-carboxyphenoxy)-phthalic acid and N-donor auxiliary ligands
  8. Preparation of ceramic γ-Al2O3–TiO2 nanofiltration membranes for desalination
  9. Promoting effect of group VI metals on Ni/MgO for catalytic growth of carbon nanotubes by ethylene chemical vapour deposition
  10. Microwave-assisted solvent-free synthesis and luminescence properties of 2-substituted-4,5-di(2-furyl)-1H-imidazoles
  11. Synthesis of potential inhibitors of glycosyltransferases representing UDP-GlcNAc
  12. Development of transition state analogue inhibitors for N-acetylglycosyltransferases bearing D-psicoor D-tagatofuranose scaffolds
  13. Efavirenz–eudragit E-100 nanoparticle-loaded aerosol foam for sustained release: in-vitro and ex-vivo evaluation
  14. Photochromic and molecular switching behaviour of Schiff base-containing pyrazolone ring
  15. Improvements to CO2 headspace biodegradability test
  16. Synthesis of corn rootworm pheromones from commercial diols
Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0023/html
Button zum nach oben scrollen