Synthesis, characterisation and photocatalytic activity of Ag+- and Sn2+-substituted KSbTeO6
-
Ravinder Guje
Abstract
Ag+- and Sn2+-substituted KSbTeO6 were prepared by a facile ion-exchange method at ambient temperature. All the samples were characterised by scanning electron microscopy, energydispersive spectra, thermogravimetric analysis, powder X-ray diffraction, Raman spectra and UV-VIS diffuse reflectance spectra. Both Sn2+- and Ag+-substituted KSbTeO6 were crystallised in a cubic lattice with the Fd3̅m space group. The band-gap energy of all the samples was deduced from their UV-VIS diffuse reflectance spectral profiles. The visible light-induced photocatalytic oxidation of the methylene blue (MB) dye was examined in the presence of all the as-prepared materials. The Ag+- and Sn2+-substituted KSbTeO6 exhibited a higher photocatalytic activity than the parent KSbTeO6 in degradation of the MB dye under visible light irradiation.
References
Abe, M., Kotani, T., & Awano, S. (1999). Ion exchange properties of oxides and hydrous oxides of pentavalent metals. In P. A. Williams, & A. Dyer (Eds.), Advances in ion exchange for industry and research (Vol. 239, pp. 199-211). Cambridge, UK: Royal Society of Chemistry.Search in Google Scholar
Alonso, J. A., Castro, A., Rasines, I., & Turrillas, X. M. (1988). Study of the defect pyrochlores A(SbTe)O6 (A=K, Rb, Cs, Tl). Journal of Materials Science, 23, 4103-4107. DOI: 10.1007/bf01106843.10.1007/BF01106843Search in Google Scholar
Alonso, J. A., & Turrillas, X. (2005). Location of H+ sites in the fast proton-conductor (H3O)SbTeO6 pyrochlore. Dalton Transactions, 2005, 865-867. DOI: 10.1039/b414705g.10.1039/b414705gSearch in Google Scholar
Babel, D., Pausewang, G., & Viebahn, W. (1967). Die Structur einiger Fluoride Oxide und Oxidfluoride AMe2X6. Zeitschrift fuer Naturforschung, Teil B. Anorganische Chemie, Organische Chemie, 22, 1219-1220.Search in Google Scholar
Boysen, H., Lerch, M., Fernandez-Alonso, F., Krzystyniak, M., Lalowicz, Z. T., Chatzidimitriou-Dreismann, C. A., & Tovar, M. (2012). On the mechanism of proton conductivity in H3OSbTeO6. Journal of Physics and Chemistry of Solids, 73, 808-817. DOI: 10.1016/j.jpcs.2012.02.004.10.1016/j.jpcs.2012.02.004Search in Google Scholar
Carp, O., Huisnan, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32, 33-177. DOI: 10.1016/j.progsolidstchem.2004.08. 001.Search in Google Scholar
Castro, A., Rasines, I., & Sanchez-Martos, M. C. (1987).Novel deficient pyrochlores A(MoSb)O6 (A = Rb, Cs).Journal of Materials Science Letters, 6, 1001-1003. DOI: 10.1007/bf01729113.10.1007/BF01729113Search in Google Scholar
Chiang, Y. M., Birnie, D. P., & Kingery, W. D. (1997). Physical ceramics: Principles for ceramics and engineering. Hoboken, NY, USA: Wiley.Search in Google Scholar
Darriet, B., Rat, M., Galy, J., & Hagenmuller, P. (1971). Sur quelques nouveaux pyrochlores des systemes MTO3-WO3 and MTO3-TeO3 (M = K, Rb, Cs, Tl; T = Nb, Ta). Materials Research Bulletin, 6, 1305-1315. DOI: 10.1016/0025-5408(71)90129-2. (in French) 10.1016/0025-5408(71)90129-2Search in Google Scholar
Gong, X., Wu, P. F., Chen, W. J., & Yang, H. X. (1998). Preparation and optical properties of nanocrystallites of RE2Sn2−xB_ xO7 (RE = Sm, Ce; B_ = Fe, Co, Ni; 0.0 ≤ x ≤ 1.0). Journal of Materials Research, 13, 469-474. DOI: 10.1557/jmr.1998.0061.10.1557/JMR.1998.0061Search in Google Scholar
Harvey, E. J., Whittle, K. R., Lumpkin, G. R., Smith, R. I., & Redfern, S. A. T. (2005). Solid solubilities of (La, Nd)2(Zr,Ti)2O7 phases deduced by neutron diffraction. Journal of Solid State Chemistry, 178, 800-810. DOI: 10.1016/j.jssc.2004.12.030.10.1016/j.jssc.2004.12.030Search in Google Scholar
Horowitz, H. S., Longo J. M., & Horowitz, H. H. (1983). Oxygen electrocatalysis on some oxide pyrochlores. Journal of the Electrochemical Society, 130, 1851-1859. DOI: 10.1149/1.2120111.10.1149/1.2120111Search in Google Scholar
Ishibashi, K., Fujishima, A., Watanabe, T., & Hashimoto, K. (2000). Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochemistry Communications, 2, 207-210. DOI: 10.1016/s1388-2481(00)00006-0.10.1016/S1388-2481(00)00006-0Search in Google Scholar
Khodja, A. A., Sehili, T., Pilichowski, J. F., & Boule, P. J. (2001). Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. Journal of Photochemistry and Photobiology A: Chemistry, 141, 231-239. DOI: 10.1016/s1010-6030(01)00423-3.10.1016/S1010-6030(01)00423-3Search in Google Scholar
Luan, J. F., Zhao, W., Feng, J. W., Cai, H. L., Zheng, Z., Pan, B. C., Wu, X. S., Zou, Z. G., & Li, Y. M. (2009). Structural, photophysical and photocatalytic properties of novel Bi2AlVO7. Journal of Hazardous Materials, 164, 781-789. DOI: 10.1016/j.jhazmat.2008.08.088.10.1016/j.jhazmat.2008.08.088Search in Google Scholar
Mączka, M., Knyazev, A. V., Kuznetsov, N. Y., Ptak, M., & Macalik, L. (2011). Raman and IR studies of TaWO5.5, ASbWO6, (A = K, Rb, Cs, Tl), and ASbWO6 ・H2O (A = H, NH4, Li, Na) pyrochlore oxides. Journal of Raman Specroscopy, 42, 529-533. DOI: 10.1002/jrs.2735.10.1002/jrs.2735Search in Google Scholar
Marschall, R., Soldat, J., & Wark, M. (2013). Enhanced photocatalytic hydrogen generation from barium tantalate composite. Photochemistry & Photobiology Sciences, 12, 671-677. DOI: 10.1039/c2pp25200g.10.1039/C2PP25200GSearch in Google Scholar
Michel, C., Groult, D., & Raveau, B. (1973). Sur de nouveaux pyrochlores ASbWO6 (A = K, Rb, Cs, Tl). Materials Research Bulletin, 8, 201-210. DOI: 10.1016/0025-5408(73)90173-6. (in French) 10.1016/0025-5408(73)90173-6Search in Google Scholar
Mims, C. A., Jacobson, A. J., Hall, R. B., & Lewandowski, J. T. (1995). Methane oxidative coupling over nonstoichiometric bismuth-tin pyrochlore catalysts. Journal of Catalysis, 153, 197-207. DOI: 10.1006/jcat.1995.1122.10.1006/jcat.1995.1122Search in Google Scholar
Porat, O., Heremans, C., & Tuller, H. L. (1997). Stability and mixed ionic electronic conduction in Gd2(Ti1−xMox)2O7 under anodic conditions. Solid State Ionics, 94, 75-83. DOI: 10.1016/s0167-2738(96)00586-3.10.1016/S0167-2738(96)00586-3Search in Google Scholar
Rabenau, A., (1978). Lithium nitride, Li3N, an unusual ionic conductor. Advances in Solid State Physics, 18, 77-108. DOI: 10.1007/bfb0107778.10.1007/BFb0107778Search in Google Scholar
Ravi, G., Veldurthi, N. K., Prasad, M. D., Muniratnam, N. R., Prasad, G., & Vithal, M. (2013a). Preparation, optical, and photocatalytic studies of defect pyrochlores: KCr0.33W1.67O6 and AxCr0.33W1.67O6 nH2O. Journal of Nanoparticle Research, 15, 1939. DOI: 10.1007/s11051-013-1939-0.10.1007/s11051-013-1939-0Search in Google Scholar
Ravi, G., Veldurthi, N. K., Palla, S., Velchuri, R., Pola, S., Reddy, J. R., & Vithal, M. (2013b). Synthesis, characterization and photocatalytic activity of KAl0.33W1.67O6 and Sn0.5Al0.33W1.67O6xH2O. Photochemistry and Photobiology, 89, 824-831. DOI: 10.1111/php.12079.10.1111/php.12079Search in Google Scholar PubMed
Reddy, J. R., Veldurthi, N. K., Palla, S., Ravi, G., Guje, R., & Vithal, M. (2013). Facile ion-exchange synthesis of visible light active Sn-doped defect pyrochlore K0.51Sb2.67O6.26 and study of its photocatalytic activity. Journal of Chemical Technology and Biotechnology. DOI: 10.1002/jctb.4264. (in press) 10.1002/jctb.4264Search in Google Scholar
Subramanian, M. A., Aravamudan, G., & Subba Rao, G. V. (1983). Oxide pypochlores - a review. Progress in Solid State Chemistry, 15, 55-143. DOI: 10.1016/0079-6786(83)90001-8.10.1016/0079-6786(83)90001-8Search in Google Scholar
Turrillas, X., Delabouglise, G., & Joubert, J. C. (1986). Ionic conductivity in the new series MSbTeO6 (M = K, Rb, Cs, Tl, Ag). Solid State Ionics, 21, 195-201. DOI: 10.1016/0167-2738(86)90072-x.10.1016/0167-2738(86)90072-XSearch in Google Scholar
Uma, S., Singh, J., & Thakral, V. (2009). Facile room temperature ion-exchange synthesis of Sn2+ incorporated pyrochloretype oxides and their photocatalytic activities. Inorganic Chemistry, 48, 11624-11630. DOI: 10.1021/ic901658w.10.1021/ic901658wSearch in Google Scholar
Vithal, M., Rama Krishna, S., Ravi, G., Palla, S., Velchuri, R., & Pola, S. (2013). Synthesis of Cu2+ and Ag+ doped Na2Ti3O7 by a facile ion-exchange method as visible-lightdriven photocatalysts. Ceramics International, 39, 8429-8439. DOI: 10.1016/j.ceramint.2013.04.025.10.1016/j.ceramint.2013.04.025Search in Google Scholar
Vogel, A. I. (1989). Textbook of quantitative chemical analysis. Harlow, UK: Longman Group.Search in Google Scholar
Wang, J. H., Zou, Z. G., & Ye, J. H. (2003). Synthesis, structure and photocatalytic property of a new hydrogen evolving photocatalyst Bi2InTaO7. Materials Science Forum, 423-425, 485-490. DOI: 10.4028/www.scientific.net/MSF.423-425.485.10.4028/www.scientific.net/MSF.423-425.485Search in Google Scholar
Yu, T. H., & Tuller, H. L. (1996). Ionic conduction and disorder in the Gd2Sn2O7 pyrochlore system. Solid State Ionics, 86, 177-182. DOI: 10.1016/0167-2738(96)00118-x.10.1016/0167-2738(96)00118-XSearch in Google Scholar
Zou, Z. G., Ye, J. H., & Arakawa, H. (2001). Substitution effects of In3+ by Fe3+ on photocatalytic and structural properties of Bi2InNbO7 photocatalysts. Journal of Molecular Catalysis A: Chemical, 168, 289-297. DOI: 10.1016/s1381-1169(00)00545-8.10.1016/S1381-1169(00)00545-8Search in Google Scholar
Zou, Z. G., & Arakawa, H. (2003). Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 158, 145-162. DOI: 10.1016/s1010-6030(03)00029-7.10.1016/S1010-6030(03)00029-7Search in Google Scholar
Zou, Z. G., Ye, J. H., & Arakawa, H. (2003). Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst. International Journal of Hydrogen Energy, 28, 663-669. DOI: 10.1016/s0360-3199(02)00159-3 10.1016/S0360-3199(02)00159-3Search in Google Scholar
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Selection and design of ionic liquids as solvents in extractive distillation and extraction processes
- Analytical procedure for steroid profiling valid for Athlete Biological Passport
- Fabrication of paper-based analytical device by silanisation of filter cellulose using alkyltrimethoxysilane coupled with UV radiation
- Synthesis, characterisation and photocatalytic activity of Ag+- and Sn2+-substituted KSbTeO6
- Dysprosium pertraction through facilitated supported liquid membrane using D2EHPA as carrier
- Volatile compounds composition and antioxidant activity of bee pollen collected in Lithuania
- Self-penetrating and interpenetrating 3D metal–organic frameworks constructed from 4-(4-carboxyphenoxy)-phthalic acid and N-donor auxiliary ligands
- Preparation of ceramic γ-Al2O3–TiO2 nanofiltration membranes for desalination
- Promoting effect of group VI metals on Ni/MgO for catalytic growth of carbon nanotubes by ethylene chemical vapour deposition
- Microwave-assisted solvent-free synthesis and luminescence properties of 2-substituted-4,5-di(2-furyl)-1H-imidazoles
- Synthesis of potential inhibitors of glycosyltransferases representing UDP-GlcNAc
- Development of transition state analogue inhibitors for N-acetylglycosyltransferases bearing D-psicoor D-tagatofuranose scaffolds
- Efavirenz–eudragit E-100 nanoparticle-loaded aerosol foam for sustained release: in-vitro and ex-vivo evaluation
- Photochromic and molecular switching behaviour of Schiff base-containing pyrazolone ring
- Improvements to CO2 headspace biodegradability test
- Synthesis of corn rootworm pheromones from commercial diols
Articles in the same Issue
- Selection and design of ionic liquids as solvents in extractive distillation and extraction processes
- Analytical procedure for steroid profiling valid for Athlete Biological Passport
- Fabrication of paper-based analytical device by silanisation of filter cellulose using alkyltrimethoxysilane coupled with UV radiation
- Synthesis, characterisation and photocatalytic activity of Ag+- and Sn2+-substituted KSbTeO6
- Dysprosium pertraction through facilitated supported liquid membrane using D2EHPA as carrier
- Volatile compounds composition and antioxidant activity of bee pollen collected in Lithuania
- Self-penetrating and interpenetrating 3D metal–organic frameworks constructed from 4-(4-carboxyphenoxy)-phthalic acid and N-donor auxiliary ligands
- Preparation of ceramic γ-Al2O3–TiO2 nanofiltration membranes for desalination
- Promoting effect of group VI metals on Ni/MgO for catalytic growth of carbon nanotubes by ethylene chemical vapour deposition
- Microwave-assisted solvent-free synthesis and luminescence properties of 2-substituted-4,5-di(2-furyl)-1H-imidazoles
- Synthesis of potential inhibitors of glycosyltransferases representing UDP-GlcNAc
- Development of transition state analogue inhibitors for N-acetylglycosyltransferases bearing D-psicoor D-tagatofuranose scaffolds
- Efavirenz–eudragit E-100 nanoparticle-loaded aerosol foam for sustained release: in-vitro and ex-vivo evaluation
- Photochromic and molecular switching behaviour of Schiff base-containing pyrazolone ring
- Improvements to CO2 headspace biodegradability test
- Synthesis of corn rootworm pheromones from commercial diols