Abstract
The current achievements in magnetic transmission soft X-ray microscopy are reviewed. The magnetic contrast is given by X-ray magnetic circular dichroism (X-MCD), i. e., the dependence of the absorption coefficient of circularly polarized X-rays on the projection of the magnetization in a ferromagnetic system onto the photon propagation direction. X-MCD contrast can reach, e. g., at L2,3 edges in transition metals large values up to 50%. Combined with a soft X-ray microscope where Fresnel zone plates as optical elements provide a lateral resolution down to 25 nm, it allows for imaging magnetic microstructures. Recording the images in varying external magnetic fields, inherent chemical specificity, a high sensitivity to thin magnetic layers due to the large contrast, and the possibility to distinguish between in-plane and out-of plane contributions allow detailed studies of static magnetization reversal processes in magnetic patterned elements and thin films. Micromagnetic simulations support the experimental findings. The broad applicability of this novel experimental technique to both fundamental and technologically relevant issues in nanomagnetism is demonstrated by selected examples. Future directions towards imaging spin dynamics on a psec time scale are briefly outlined.
Abstract
In diesem Bericht wird der gegenwärtige Stand der magnetischen Transmissions-Röntgenmikroskopie mit weicher Röntgenstrahlung dargestellt. Magnetischer Kontrast wird durch den zirkularen magnetischen Röntgendichroismus (X-MCD), d. h. durch die Abhängigkeit des Absorptionskoeffizienten zirkular polarisierter Röntgenstrahlung von der Projektion der Magnetisierung einer ferromagnetischen Probe auf die Photonenausbreitungsrichtung erzeugt. Der Zirkulardichroismus kann an den L2,3-Kanten der Übergangsmetalle Werte von bis zu 50% erreichen. In Kombination mit einem Röntgenmikroskop, das im weichen Röntgenbereich mit Hilfe von Fresnelzonenplatten, die als optische Elemente eingesetzt werden, eine laterale Auflösung bis zu 25 nm erreicht, kann man so magnetische Mikrostrukturen abbilden. Die Möglichkeit, diese in veränderlichen externen Magnetfeldern aufzunehmen, die inhärente chemische Spezifität, die hohe Sensitivität auf dünne magnetische Schichten auf Grund des großen Kontrastes und die Möglichkeit, Magnetisierungen zu beobachten, die sowohl in der Filmebene als auch senkrecht dazu orientiert sind, erlauben es, detaillierte Studien des statischen Magnetisierungsumkehrprozesses in lateral strukturierten und dünnen magnetischen Schichten durchzuführen. Mikromagnetische Simulationsrechnungen unterstutzen die experimentellen Befunde. Die Bandbreite der Anwendungen dieser neuartigen experimentellen Technik, die sowohl grundlagenorientierte als auch technologisch relevante Fragestellungen des „Nanomagnetismus“ untersuchen kann, wird anhand ausgewählter Beispiele demonstriert. Zukünftige Entwicklungen, die auf das Abbilden der Spindynamik auf einer sub-ns-Zeitskala abzielen, werden kurz erläutert.
-
We like to thank B. Ludescher (Max Planck Institute for Metals Research, Stuttgart), T. Ono, T. Okuno and T. Shinjo (University of Kyoto), and the group of G. Bayreuther and D. Weiss (University of Regensburg) for preparing excellent samples. Supported in part by the German Science Foundation and the US Department of Energy.
References
1 Grünberg, P.; Schreiber; R.; Pang, Y.; Brodsky, M.B.; Sowers, H.: Phys. Rev. Lett. 57 (1986) 2442.10.1103/PhysRevLett.57.2442Search in Google Scholar
2 Baibich, M.N.; Broto, J.M..; Fert, A.; Nguyen Van Dau, F.; Petroff, F.; Eitenne, P.; Creuzet, G.; Friederich, A.; Chazelas, J.: Phys. Rev. Lett. 61 (1988) 2472.10.1103/PhysRevLett.61.2472Search in Google Scholar
3 Prinz, G.A.: Science 282 (1998) 1660.10.1126/science.282.5394.1660Search in Google Scholar
4 Allenspach, R.: IBM J. Res. Development 44 (2000) 553.10.1147/rd.444.0553Search in Google Scholar
5 Pierce, D.T.; Davies, A. D.; Stroscio, J. A.; Tulchinsky, D. A.; Unguris, J.; Celotta, R. J.: J. Magn. Magn. Mater. 222 (2000) 13.10.1016/S0304-8853(00)00551-5Search in Google Scholar
6 Schneider, M.; Hoffmann, H.; Zweck, J.: Appl. Phys. Lett. 77 (2000) 2909.10.1063/1.1320465Search in Google Scholar
7 Kirk, K.J.; McVitie, S.; Chapman, J.N.; Wilkinson, C.D.W.: J. Appl. Phys. 89 (2001) 7174.10.1063/1.1355336Search in Google Scholar
8 Wiesendanger, R.; Bode, M.: Solid State Comm. 119 (2001) 341.10.1016/S0038-1098(01)00103-XSearch in Google Scholar
9 Scholl, A.; Nolting, F.; Stöhr, J.; Regan, T.; Lüning, J.; Seo, J. W.; Locquet, J.-P.; Fompeyrine, J.; Anders, S.; Ohldag, H.; Padmore; H.A.: J. Appl. Phys. 89 (2001) 7266.10.1063/1.1358828Search in Google Scholar
10 Kuch, W.; Gilles, J.; Kang, S. S.; Imada, S.; Suga S.; Kirschner, J.: Phys. Rev. B 62 (2000) 3824.10.1103/PhysRevB.62.3824Search in Google Scholar
11 Dahlberg, D.; Zhu, J.: Physics Today April (1995) 34.10.1063/1.881447Search in Google Scholar
12 Bonfim, M.; Ghiringhelli, G.; Montaigne, F.; Pizzini, S.; Brookes, N.B.; Petroff, F.; Vogel, J.; Camarero, J.; Fontaine A.: Phys. Rev. Lett. 86 (2001) 3646.10.1103/PhysRevLett.86.3646Search in Google Scholar
13 Acreman, Y.; Back, C.H.; Buess, M.; Portmann, O.;Vaterlaus, A.; Pescia, D.; Melchior, H.: Science 290 (2000) 492.10.1126/science.290.5491.492Search in Google Scholar
14 Leineweber, T.; Kronmüller, H.: J. Magn. Magn. Mater. 192 (1999) 575.10.1016/S0304-8853(98)00593-9Search in Google Scholar
15 Fidler, J.; Schrefl, T.; Suss, D.; Scholz,W.: IEEE Trans. Magn. 37 (2001) 2058.10.1109/20.951052Search in Google Scholar
16 Fischer, P.; Schütz, G.; Schmahl, G.; Guttmann, P.; Raasch, D.: Z. Physik B 101 (1996) 313.10.1007/s002570050214Search in Google Scholar
17 Fischer, P.; Eimüller, T.; Schütz, G.; Guttmann, P.; Schmahl, G.; Prügl, K.; Bayreuther, G.: J. Phys. D: Appl. Physics 31 (1998) 649.10.1088/0022-3727/31/6/012Search in Google Scholar
18 Fischer, P.; Eimüller, T.; Schütz, G.; Guttmann, P.; Schmahl, G.; Köhler, M.; Bayreuther, G.: J. Magn. Soc. Japan 23 Suppl. S1 (1999) 205.Search in Google Scholar
19 Schütz, G.; Wagner, W.; Wilhelm, W.; Kienle, P.; Zeller, R.; Frahm, R.; Materlik, G.: Phys. Rev. Lett. 58 (1987) 737.10.1103/PhysRevLett.58.737Search in Google Scholar
20 Chen, C.T.; Sette, F.; Ma, Y.; Modesti, S.: Phys. Rev. B 42 (1990) 7262.10.1103/PhysRevB.42.7262Search in Google Scholar
21 Bahrdt, J.; Frentrup, W.; Gaupp, A.; Scheer, M.; Gudat, W.; In-gold, G.; Sasaki, S.: Nucl. Instrum. Meth. in Phys. Res. A 467–468 (2001) 21.10.1016/S0168-9002(01)00554-XSearch in Google Scholar
22 Ohldag, H. ; Scholl, A.; Nolting, F.; Anders, S.; Hillebrecht, F. U.; Stöhr, J.: Phys. Rev. Lett. 86 (2001) 2878.10.1103/PhysRevLett.86.2878Search in Google Scholar
23 Thole, B.T.; Carra, P.; Sette, F.; van der Laan, G.: Phys. Rev. Lett. 68 (1992) 1943.10.1103/PhysRevLett.68.1943Search in Google Scholar
24 Carra, P.; Thole, B.T.; Altarelli, M.;Wang, X.: Phys. Rev. Lett. 70 (1993) 694.10.1103/PhysRevLett.70.694Search in Google Scholar
25 Stoehr, J.; Wu, Y.; Hermsmeier, B.D.; Samant, M.G.; Harp, G.; Koranda, S.: Science 259 (1993)10.1126/science.259.5095.658Search in Google Scholar
26 Kortright, J.B.; Kim, S.-K.; Ohldag, H.; Meigs, G.; Warwick, A., in: W. Meyer-Ilse, T. Warwick, D. Attwood (eds.), X-Ray Microscopy, Vol. 507, American Institute of Physics, Melville (2000) 49.Search in Google Scholar
27 Fischer, P.; Eimüller, T.; Schütz, G.; Denbeaux, G.; Lucero, A.; Johnson, L.; Attwood, D.; Tsunashima, S.; Kumazawa, M.; Takagi, N.; Köhler, M.; Bayreuther, G.: Rev. Sci. Instr. 72 (2001) 2322.10.1063/1.1351840Search in Google Scholar
28 Denbeaux, G.; Johnson, L.E.; Meyer-Ilse, W., in: As Ref. [26], p. 478.Search in Google Scholar
29 Meyer-Ilse, W.; Denbeaux, G.; Johnson, L.E.; Bates, W.; Lucero, A.; Anderson, E.H.; in: As Ref. [26], p. 129.Search in Google Scholar
30 Pearson, A.; Chao, W.; Denbeaux, G.; Eimüller, T.; Fischer, P.; Johnson, L.; Köhler, M.; Larabell, C.; Le Gros, M.; Yager, D.; Attwood, D., in: W.M. Kaiser, R.H. Stulen (eds.), Proc. of SPIE, Soft X-ray and EUV Imaging Systems, Vol. 4146, Bellingham, WA (2000) 54.Search in Google Scholar
31 Fischer, P.; Eimüller, T.; Schütz, G.; Köhler, M.; Bayreuther, G.; Denbeaux, G.; Attwood, D.: J. Appl. Phys. 89 (2001) 7159.10.1063/1.1355333Search in Google Scholar
32 Bonfim, M.; Mackay, K.; Pizzini, S.; Arnou, M-L.; Fontaine A.; Ghiringhelli, G.; Pascarelli, S.; Neisius, T.: J. Appl. Phys. 87 (2000) 5974.10.1063/1.372584Search in Google Scholar
33 Kusinski, G.J.; Krishnan, K.M.; Denbeaux, G.; Thomas, G.; Terris, B.D.; Weller, D.: Appl. Phys. Lett. 79 (2001) 2211.10.1063/1.1407301Search in Google Scholar
34 Eimüller, T.; Fischer, P.; Köhler, M.; Scholz, M.; Guttmann, P.; Denbeaux, G.; Glück, S.; Bayreuther, G.; Schmahl, G.; Attwood, D.; Schütz, G.: Appl. Phys. A 73 (2001) 697.10.1007/s003390100963Search in Google Scholar
35 Hubert, A.; Schäfer, R.: Magnetic Domains, Springer, New York (1998).Search in Google Scholar
36 Kronmüller, H.; Hertel, R.: JMMM 215 (2000) 11.10.1016/S0304-8853(00)00055-XSearch in Google Scholar
37 Geissler, J.; Goering, E.; Justen, M.; Weigand, F.; Schütz, G.; Langer, J.; Schmitz, D.; Maletta, H.; Mattheis, R.: Phys. Rev. B 65 (2002) 020405(R).10.1103/PhysRevB.65.020405Search in Google Scholar
© 2002 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Max-Planck-Institut für Metallforschung
- Articles/Aufsätze
- Towards a micromechanical understanding of biological surface devices
- Solid state phase transformation kinetics: a modular transformation model
- Electronic structure investigations of Ni and Cr films on (100)SrTiO3 substrates using electron energy-loss spectroscopy
- Surface magnetization reversal of sputtered CrO2
- Magnetic imaging with full-field soft X-ray microscopy
- Dislocation dynamics in sub-micron confinement: recent progress in Cu thin film plasticity
- Fatigue behavior of polycrystalline thin copper films
- Grain growth in magnetron-sputtered nickel films
- Thin Pd films on SrTiO3 (001) substrates: ab initio local-density-functional theory
- Coupled grain boundary and surface diffusion in a polycrystalline thin film constrained by substrate
- Gallium segregation at grain boundaries in aluminium
- Current work at the Stuttgart UHV diffusion bonding facility
- Bonding between Cu and α-Al2O3
- Compressive deformation of niobium sandwich-bonded to alumina
- SiO2-coated carbon nanotubes: theory and experiment
- Simulation of solidification structures of binary alloys
- Gaseous nitriding of iron-chromium alloys
- Deposition of ceramic materials from aqueous solution induced by organic templates
- Notifications/Mitteilungen
- Personen
- Books
- Information
- DGM Further Training
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Max-Planck-Institut für Metallforschung
- Articles/Aufsätze
- Towards a micromechanical understanding of biological surface devices
- Solid state phase transformation kinetics: a modular transformation model
- Electronic structure investigations of Ni and Cr films on (100)SrTiO3 substrates using electron energy-loss spectroscopy
- Surface magnetization reversal of sputtered CrO2
- Magnetic imaging with full-field soft X-ray microscopy
- Dislocation dynamics in sub-micron confinement: recent progress in Cu thin film plasticity
- Fatigue behavior of polycrystalline thin copper films
- Grain growth in magnetron-sputtered nickel films
- Thin Pd films on SrTiO3 (001) substrates: ab initio local-density-functional theory
- Coupled grain boundary and surface diffusion in a polycrystalline thin film constrained by substrate
- Gallium segregation at grain boundaries in aluminium
- Current work at the Stuttgart UHV diffusion bonding facility
- Bonding between Cu and α-Al2O3
- Compressive deformation of niobium sandwich-bonded to alumina
- SiO2-coated carbon nanotubes: theory and experiment
- Simulation of solidification structures of binary alloys
- Gaseous nitriding of iron-chromium alloys
- Deposition of ceramic materials from aqueous solution induced by organic templates
- Notifications/Mitteilungen
- Personen
- Books
- Information
- DGM Further Training