Abstract
An earlier proposed method for the estimation of critical data of metals with extrapolated vapor pressure curves does not work with uranium. This strongly indicates the problems of such high-temperature extrapolations with the available vapor pressure data. Thus, various similarity relations for the critical data have been discussed. As most reliable values the critical temperature Tc = 9 000 K and pressure pc = 5000 bar have been chosen. With these values a two-term vapor pressure equation has been constructed.
Literature
1 Likalter, A.A.: Teplofiz. Vys. Temp. 23 (1985) 465–471; see also: Likalter, A. A.: Phys. Review B53 (1996) 4386–4392 and Dokl. Akad. Nauk 259 (1981) 96–99.Suche in Google Scholar
2 Hess, H.: Z. Metallkd. 86 (1995) 240–244.Suche in Google Scholar
3 Hess, H.: Phys. Chem. Liq. 30 (1995) 251–256.10.1080/00319109508030672Suche in Google Scholar
4 Hess, H.; Kaschnitz, E.; Pottlacher, G.: High Pressure Res. 12 (1994) 29–42.10.1080/08957959408201653Suche in Google Scholar
5 Hess, H.; Schneidenbach, H.: Z. Metallkd. 87 (1996) 979–984.Suche in Google Scholar
6 Hess, H.: Z. Metallkd. 89 (1998) 388–393.Suche in Google Scholar
7 Likalter, A.: Physica Scripta 55 (1997) 114–118.10.1088/0031-8949/55/1/023Suche in Google Scholar
8 Goldstein, R.E.; Parola, A.; Smith, A.P.: J. Chem. Phys. 91 (1989)1843–1854.10.1063/1.457089Suche in Google Scholar
9 Fortov, V.E.; Dremin, A.N.; Leontyev, A.A.: Teplofiz. Vys. temp. 13 (1975) 1072–1080; cf. also High Temperature (USSR) 13 (1976) 984–999.Suche in Google Scholar
10 Young, D.A.: A Soft-Sphere Model for Liquid Metals, UCRL-52352, Lawrence Livermore Laboratory, Univ. of California (1977) 1–15.10.2172/5154392Suche in Google Scholar
11 Hess, H.: in: Ebeling W., Radtke R. and Förster A. (eds). Teubner Texte zur Physik, Vol.26, B.G. Teubner Verlagsgesellschaft, Stuttgart, Leipzig (1992) 131–138.Suche in Google Scholar
12 Kubaschewski, O.; Alcock, C.B.: Metallurgical Thermochemistry, Pergamon Press, Oxford (1979).Suche in Google Scholar
13 Iida, T.; Guthrie, R.I.L.: The Physical Properties of Liquid Metals, Clarendon Press, Oxford (1993).Suche in Google Scholar
14 Hultgren, R.; Desai, P.D.; Hawkins, D.T.; Gleiser, M.; Kelley, K.K.; Wagman, D.D.: Selected Values of the Thermodynamic Properties of the Elements, Am. Soc. for Metals, Metals Park, OH (1973).Suche in Google Scholar
15 Alcock, C.B.; Itkin, V.P.; Horrigan, M.K.: Canad. Metall. Quart. 23(1984) 309–318.10.1179/cmq.1984.23.3.309Suche in Google Scholar
16 Beutel, M.; Pottlacher, G.; Jäger, H.: Int. J. Thermophys. 15 (1994) 1323–1331.10.1007/BF01458840Suche in Google Scholar
17 Kloss, A.; Motzke, T.; Grossjohann, R.; Hess, H.: Phys. Rev. E54 (1996) 5851–5854. See also: Hess, H.; Kloss, A.; Rakhel, A.; Schneidenbach, H.: Int. J. Thermophys. 20 (1999) 1279–1288.Suche in Google Scholar
18 Likalter, A.A.: Sov. Phys. Usp. 35 (1992) 591.10.1070/PU1992v035n07ABEH002249Suche in Google Scholar
19 Gates, D.S.; Thodos, G.: A. I. Ch. E. Journal 6 (1960) 50–54.10.1002/aic.690060110Suche in Google Scholar
20 Grosse, A.V: J. Inorg. Nucl. Chem. 22 (1961) 23–31.10.1016/0022-1902(61)80225-XSuche in Google Scholar
21 Morris, E.: An Application of the Theory of Corresponding States to the Prediction of the Critical Constants of Metals, AWRE Report No. 0–67/64, Atomic Weapons Research Establishment, United Kingdom Atomic Energy Authority (1964) 1–17.Suche in Google Scholar
22 Kopp, I.Z.: Russ. J. Phys. Chem. 41 (1967) 782–783.Suche in Google Scholar
23 Young, D.A.; Alder, B.J.: Phys. Rev. A3 (1971) 364–371.10.1103/PhysRevA.3.364Suche in Google Scholar
24 Gathers, G.R.; Shaner, J.W.; Young, D.A.: Phys. Rev. Lett. 33 (1974) 70–72.10.1103/PhysRevLett.33.70Suche in Google Scholar
25 Hornung, K.: J. Appl. Phys. 46 (1975) 2548.10.1063/1.321932Suche in Google Scholar
26 Martynyuk, M.M.: Critical-Point Parameters of Metals (in Russian), Peoples Friendship University, Moscow (1989) 1–63; see also Martynyuk, M.M.: Thermochimica Acta 206 (1992) 55–60 and Martynyuk, M.M.; Panteleichuk, O.G.: Teplofiz. Vys. Temp. 14(1976) 1201–1205.Suche in Google Scholar
27 Guldberg, C.M.: Z. Physik. Chem. 5 (1890) 374–382.10.1515/zpch-1890-0534Suche in Google Scholar
28 Lang, G.: Z. Metallkd. 68 (1977) 213–218.Suche in Google Scholar
29 Emsley, J.: The Elements, Clarendon Press, Oxford (1992) 208 and 235.Suche in Google Scholar
30 Barin, I.: Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim (1993) 1580.Suche in Google Scholar
31 Schulze, G.E.R.: Metallphysik, Akademie-Verlag, Berlin (1974).10.1007/978-3-7091-3275-3Suche in Google Scholar
32 Hess, H.; Schneidenbach, H.; Kloss, A.: Phys. Chem. Liq. 37 (1999) 719.10.1080/00319109908035950Suche in Google Scholar
33 Hensel, F.; Jiingst, S.; Knuth, B.; Uchtmann, H.; Yao, M.: Physica B139/140 (1986) 90–95.Suche in Google Scholar
34 Henglein, E.: Technologie außergewohnlicher Metalle, Verlag Europa-Lehrmittel, Haan-Gruiten (1991) 110.Suche in Google Scholar
35 Goodfellow Katalog, Bad Nauheim (1996/97) 24.Suche in Google Scholar
© 2001 Carl Hanser Verlag, München
Artikel in diesem Heft
- Frontmatter
- Aufsätze/Articles
- On Properties of Interstitials and Vacancies in Stainless Steels: A Review
- Thermodynamic Assessment of the Ru–Si System
- The Phase Diagram of the In–Sb–Sn System
- The Excess Enthalpies of Liquid Ag-Ge-Te and Ag-Sn-Te Alloys
- A Model for the Calculation of the Bainitic Phase Transformation Kinetics from Dilatometric Data
- Untersuchung zum Vergleich der σ-Phasenausscheidung in einem rostfreien Superferrit und einem Duplex-Stahl
- Effect of Different Rolling Schedules on the Mechanical Properties and Microstructure of X60 Type HSLA Steel
- Thermochemical Study of High Temperature Corrosion of Iron in a Diluted HCl + SO2 Environment
- Calculation of the Debye Temperature and Study of the Lattice Dynamics of Fe80–xNixCr20 by 57Fe Mössbauer Spectroscopy
- Surface Self-Cleaning Effect of Zn-22Al Alloy during Superplastic Deformation
- Acoustic Emission and Strain Localization in FCC Single Crystals Compressed in Channel-Die at Low Temperature
- Wetting of Alumina, Iron and Stainless Steel Substrates by Molten Magnesium
- Split-Induced Lüders Bands in Non-Sag Tungsten Wires during Torsion
- The Structure and Crystallization of Amorphous Ni–Fe–P–B Alloys Prepared by Electrons Plating
- The Formation of Aluminum Phosphide in Aluminum Melt Treated with an Al–Fe–P Inoculant Addition
- Vapor Pressure and Critical Data for Uranium
- Mitteilungen/Notifications
- Personen
- Mitteilungen/News
- Bücher/Books
- Tagungen/Conferences
Artikel in diesem Heft
- Frontmatter
- Aufsätze/Articles
- On Properties of Interstitials and Vacancies in Stainless Steels: A Review
- Thermodynamic Assessment of the Ru–Si System
- The Phase Diagram of the In–Sb–Sn System
- The Excess Enthalpies of Liquid Ag-Ge-Te and Ag-Sn-Te Alloys
- A Model for the Calculation of the Bainitic Phase Transformation Kinetics from Dilatometric Data
- Untersuchung zum Vergleich der σ-Phasenausscheidung in einem rostfreien Superferrit und einem Duplex-Stahl
- Effect of Different Rolling Schedules on the Mechanical Properties and Microstructure of X60 Type HSLA Steel
- Thermochemical Study of High Temperature Corrosion of Iron in a Diluted HCl + SO2 Environment
- Calculation of the Debye Temperature and Study of the Lattice Dynamics of Fe80–xNixCr20 by 57Fe Mössbauer Spectroscopy
- Surface Self-Cleaning Effect of Zn-22Al Alloy during Superplastic Deformation
- Acoustic Emission and Strain Localization in FCC Single Crystals Compressed in Channel-Die at Low Temperature
- Wetting of Alumina, Iron and Stainless Steel Substrates by Molten Magnesium
- Split-Induced Lüders Bands in Non-Sag Tungsten Wires during Torsion
- The Structure and Crystallization of Amorphous Ni–Fe–P–B Alloys Prepared by Electrons Plating
- The Formation of Aluminum Phosphide in Aluminum Melt Treated with an Al–Fe–P Inoculant Addition
- Vapor Pressure and Critical Data for Uranium
- Mitteilungen/Notifications
- Personen
- Mitteilungen/News
- Bücher/Books
- Tagungen/Conferences