Home Split-Induced Lüders Bands in Non-Sag Tungsten Wires during Torsion
Article
Licensed
Unlicensed Requires Authentication

Split-Induced Lüders Bands in Non-Sag Tungsten Wires during Torsion

  • László Uray EMAIL logo
Published/Copyright: January 6, 2022
Become an author with De Gruyter Brill

Abstract

Commercial K–Si–Al-doped tungsten wires, selected by different splitting properties, are investigated by torsion. During deformation the “as-drawn” wires deform in visible Lüders bands (LBs), while no LBs appear after stress-relieve annealing (at 1700 K). This change in the properties corresponds to a transition annealing temperature of T ≈ 1200 K, which can hardly be seen in wires with splits or latent splits. The first LB usually appears at low surface strains (γ ≤ 0.04) and coincides with the yield point phenomenon. At higher strains new LBs appear and propagate axially till they all meet at γ ≈ 0.7 to 1. In some respect axially split wires resemble to a cable, represented now by a stranded copper cable (10 mm × 0.1 mm).

Abstract

Nach Spalteigenschaften ausgewählte kommerzielle, K–Si–Al-dotierte Wolfram-Drähte wurden mit der Torsionsmethode untersucht. Die „frisch gezogenen” Drähte bildeten Lüders-Bänder (LB), aber keine LB traten nach Glühung bei 1700 K auf. Diese Eigenschaftsänderungen entsprechen einer Übergangsglühtemperatur von T ≈ 1200 K und sind an Drähten mit sichtbaren oder latenten Spalten nicht zu beobachten. Bei Torsion erscheinen die ersten Spalten im allgemeinen bei kleinen Oberflächenverformungswerten (γ ≤ 0,04) und koinzidieren mit der Fließspannung. Bei stärkeren Verformungen entstehen und wachsen ständig neue LB und treffen sich bei γ ≈ 0.7 to 1. In Drähten sind in gewisser Hinsicht die axial gerichteten Spalten einem Kabel ähnlich, das durch ein Kupferkabel mit den Abmessungen 10 mm × 0.1 mm repräsentiert werden kann.


L. Uray Research Institute for Technical Physics and Materials Science Hungarian Academy of Sciences P.O.Box 49, H-1525 Budapest, Hungary Fax:+36 1392 2226

  1. The author wishes to thank Dr. I. Gaál for helpful discussions. This work was supported by the National Research Fund (OTKA), contract No. T 32730.

Literature

1 Cottrell, A.H.: Dislocations and Plastic Flow in Crystals, Clarendon Press, Oxford (1953).Search in Google Scholar

2 Hahn, G.T.: Acta Metall. 10 (1962) 727.10.1016/0001-6160(62)90041-XSearch in Google Scholar

3 Hall, E.O.: Yield Point Phenomena in Metals and Alloys, McMillan, London (1970).10.1007/978-1-4684-1860-6Search in Google Scholar

4 Brechet, V.J.M.; Canova, G.R.; Kubin, L.P.: Scripta Metall. Mater. 29 (1993) 1165.10.1016/0956-716X(93)90103-YSearch in Google Scholar

5 McCormick, P.G.; Venkadesan, S.; Ling, C.P.: Scripta Metall. Mater. 29(1993) 1159.10.1016/0956-716X(93)90102-XSearch in Google Scholar

6 Dablij, M.; Zeghoul, A.: Mater. Sci. Eng. A 237 (1997) 1.10.1016/S0921-5093(97)00101-9Search in Google Scholar

7 Thevenet, D.; Mliha-Touati, M.; Zeghoul, A.: Mater. Sci. Eng. A 266 (1999) 175.10.1016/S0921-5093(99)00029-5Search in Google Scholar

8 Pink, E.; Arsenault, R.J.: Mater. Sci. Eng. A 272 (1999) 57.10.1016/S0921-5093(99)00458-XSearch in Google Scholar

9 Szökefalvi-Nagy, A.: Scripta Metall. 16 (1982) 1009.10.1016/0036-9748(82)90446-XSearch in Google Scholar

10 Uray, L.: Mater. Sci. Eng. A 112 (1989) 89.10.1016/0921-5093(89)90347-XSearch in Google Scholar

11 Uray, L.: High Temp. Mater. Proc. 16 (1997) 1.10.1515/HTMP.1997.16.1.1Search in Google Scholar

12 Gandhi, C.; Ashby, M.F.: Acta Metall. 27 (1979) 1565.10.1016/0001-6160(79)90042-7Search in Google Scholar

13 Morniroli, J.P., in: Pink E.; Bartha L. (eds.): The Metallurgy of Doped/Non-Sag Tungsten, Elsevier Applied Science, New York (1989) 235.Search in Google Scholar

14 Bramfit, B.L.; Marder, A.R.: Metall. Trans. 8 A (1977) 1263.10.1007/BF02643841Search in Google Scholar

15 Gaál, I.: As Ref. [13] 141.Search in Google Scholar

16 Schob, O.: As Ref. [13] 83.Search in Google Scholar

17 Covington, E.J.: As Ref. [13] 267.Search in Google Scholar

18 Hallgart, J.K.: Ironmaking & Steelmaking 22 (1995) 211.Search in Google Scholar

19 Grabianowski, A.; Kurowski, M.; Bielanska, E.; Schütz, H.: Z. Metallkd. 86 (1995) 852.Search in Google Scholar

20 Snow, D.: Metall. Trans. 7 A (1976) 783.10.1007/BF02644074Search in Google Scholar

21 Godecki, L.: Wire Industry (1969) 241.Search in Google Scholar

22 Bailey, J.A., in: Metals Handbook, Vol. 8., Mechanical Testing, ASM, Metals Park, OH, (1985) 139.Search in Google Scholar

23 Uray, L.: High Temp. Mater. Proc. 16 (1997) 139.10.1515/HTMP.1997.16.2.139Search in Google Scholar

24 Semiatin, S.L.; Lahoti, G.D.; Jonas, J.J.: As Ref. [22] 154.Search in Google Scholar

25 Briant, C.L., in: Bildstein H., Eck R. (eds.): Proc. 13th Int. Plansee Sem., Metallwerk Plansee, Reutte, V.1.RM 42 (1993) 321.Search in Google Scholar

26 Nagy, G.; Uray, L.: High Temp. Mater. Proc. 13 (1994) 17.10.1515/HTMP.1994.13.1.17Search in Google Scholar

27 Uray, L.; Gaál, I.: High Temp. Mater. Proc. 13 (1994) 87.10.1515/HTMP.1994.13.1.87Search in Google Scholar

28 Snow, D.: As Ref. [13] 189.Search in Google Scholar

29 Pink, E.; Gaál, I.: As Ref. [13] 209.Search in Google Scholar

30 Yamamoto, H.: As Ref. [13] 31.Search in Google Scholar

31 Horacsek, O.: As Ref. [13] 175.Search in Google Scholar

32 Wang, Sheng-Hui; Müller, C.: Mater. Sci. Eng. A 255 (1998) 7.10.1016/S0921-5093(98)00785-0Search in Google Scholar

33 Godecki, L.: Wire Industry (1969) 524.Search in Google Scholar

Received: 2000-06-28
Published Online: 2022-01-06

© 2001 Carl Hanser Verlag, München

Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2001-0075/html
Scroll to top button