Home A Model for the Calculation of the Bainitic Phase Transformation Kinetics from Dilatometric Data
Article
Licensed
Unlicensed Requires Authentication

A Model for the Calculation of the Bainitic Phase Transformation Kinetics from Dilatometric Data

  • J.Z. Zhao , C. Mesplont and B.C. De Cooman EMAIL logo
Published/Copyright: January 6, 2022
Become an author with De Gruyter Brill

Abstract

The development of a method for determining phase transformation kinetics for a multistep solid-state transformation from a dilatation curve is described. The dilatation of steels during a continuous cooling or an isothermal holding of an austenite is analyzed. A model is proposed in which the transient dilatation is calculated based on the fraction of the phases present. The model can be applied to calculate the phase transformation kinetics from a dilatation curve of a hypo-eutectoid steel. After verification by comparison with experimental results for an interstitial-free steel, the model is used to calculate the transformation kinetics indicated by the dilatation curves of a bainitic grade steel. Excellent agreement between the model and experiments has been obtained.


B.C. De Cooman Ghent University Technologiepark 9, B-9052 Ghent, Belgium Fax:+32926458 33

Literature

1 Takahashi, M.; Bhadeshia, H.K.D.H.: J. Mater. Sci. Lett, 8 (1989) 477.10.1007/BF00720712Search in Google Scholar

2 Onink, M.; Tichelaar, F.D.; Brakman, CM.; Mittemeijer, E.J.; Zwaag, S.: Z. Metallkd. 87 (1996) 24.Search in Google Scholar

3 Qiu, C; Zwaag, S.: Steel Res. 68 (1997) 1.10.1002/srin.199701774Search in Google Scholar

4 Kop, T.A.; Sietsma, J.; Zwaag, S., in: Proc. Int. Conf. on Materials Solutions’97 on Accelerated Cooling/Direct Quenching Steels, ASM International, Indianapolis, IN (1997) 159.Search in Google Scholar

5 Gorton, AT.; Bitsianes, G.; Joseph, T.L.: Trans. Metall Soc. AIME 233 (1965) 1519.Search in Google Scholar

6 Cockett, GH.; Davis, CD.: J. Iron Steel Inst. 201 (1963) 110.Search in Google Scholar

7 Kohlhaas, R.; Dünner, Ph.; Schmitz-Pranghe, N.: Z. angew. Phys. 23 (1967) 245.Search in Google Scholar

8 Ridley, N; Stuart, H.: Brit. J. Appl. Phys. 1 (1968) 1291.Search in Google Scholar

9 Babyuk, T.I.; Kushta, GP; Mikhal’chenko, V.P: Phys. Met. & -Metallogr. 38 (1974) 56.Search in Google Scholar

10 Babyuk, T.I.: Phys. Met. & Metallogr. 49 (1980) 82.Search in Google Scholar

11 Onink, M.; Brakman, CM.; Tichelaar, F.D.; Mittemeijer, E.J.; Zwaag, S.: Scripta Metall. Mater. 29 (1993) 1011.10.1016/0956-716X(93)90169-SSearch in Google Scholar

12 Straumanis, M.E.; Kim, D.C.: Z. Metallkd. 62 (1997) 272.Search in Google Scholar

13 Sounders, W.; Hidnert, P.: U.S.B.S. Sei. Pap. 21 (1926/27) 524.Search in Google Scholar

14 Ridley, N; Stuart, H.: J. Met. Sci. 4 (1970) 219.10.1179/msc.1970.4.1.219Search in Google Scholar

15 Esser, H.; Müller, G: Arch. Eisenhuttenwes. 7 (1933) 265.10.1002/srin.193300047Search in Google Scholar

16 Fasiska, EJ.; Wagenblast, H.: Trans. Metall. Soc. AIME 239 (1967) 1818.Search in Google Scholar

17 Jablonka, A.; Harste, K; Schwerdfeger, K: Steel Res. 62 (1991) 24.10.1002/srin.199101722Search in Google Scholar

18 Dyson, DJ.; Holmes, B.: JISI 208 (1970) 469.Search in Google Scholar

19 Leslie, W.C: Metall. Trans. 3 (1972) 5.10.1007/BF02680580Search in Google Scholar

20 Steven, W.; Haynes, A.G: J. Iron Steel Institute 183 (1956) 349.Search in Google Scholar

21 LePera, FS.: J. Metals 32 (No. 3) (1980) 38.10.1007/BF03354553Search in Google Scholar

Received: 2000-06-30
Published Online: 2022-01-06

© 2001 Carl Hanser Verlag, München

Downloaded on 28.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2001-0067/html?lang=en
Scroll to top button