Startseite Influence of Titanium Dioxide Modified Expandable Graphite and Ammonium Polyphosphate on Combustion Behavior and Physicomechanical Properties of Rigid Polyurethane Foam
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of Titanium Dioxide Modified Expandable Graphite and Ammonium Polyphosphate on Combustion Behavior and Physicomechanical Properties of Rigid Polyurethane Foam

  • X.-Y. Pang , W.-S. Chang , R. Chang und M.-Q. Weng
Veröffentlicht/Copyright: 17. April 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this research, the individual influence and synergistic behavior between titanium dioxide modified expendable graphite and ammonium polyphosphate on combustion behavior and physicomechanical properties of rigid polyurethane foam (RPUF) were investigated. Combustion behavior was evaluated by limiting oxygen index, and vertical-combustion tests. Thermal stability was studied via thermogravimetric/differential thermal gravimetric (TG/DTG) analysis. Results showed that the modified expendable graphite presented better thermal stability and flame retardancy for RPUF than the normal expandable graphite. Furthermore, the combination of the modified expendable graphite and ammonium polyphosphate with the mass ratio of 1 : 1 caused the RPUF to exhibit better flame retardancy, compression strength and high temperature thermal stability. Especially, the compression strength of this polymer composite sharply increased by 52.4 % over RPUF.


*Correspondence address, Mail address: Xiuyan Pang, College of Chemistry and Environmental Science, Hebei University, Hezuo Road No. 180, Baoding, 071002, PRC, E-mail:

References

ASTM D 1621–94, “Standard Test Method for Compressive Properties of Rigid Cellular Plastics”, (1994)Suche in Google Scholar

ASTM D 1622/D 1622 M, “Standard Test Method for Apparent Density of Rigid Cellular Plastics”, (2014)Suche in Google Scholar

Bian, X. C., Tang, J. H., Li, Z. M., Lu, Z. Y. and Lu, A., “Dependence of Flame Retardant Properties on Density of Expandable Graphite Filled Rigid Polyurethane Foam”, J. Appl. Polym. Sci., 104, 33473355 (2007) 10.1002/app.25933Suche in Google Scholar

Chen, L., Wang, Y. Z., “A Review on Flame Retardant Technology in China. Part 1: Development of Flame Retardants”, Polym. Adv. Technol., 21, 126 (2010) 10.1002/pat.1550Suche in Google Scholar

Chen, Y. J., Jia, Z. X., Luo, Y. F., Jia, D. M. and Li, B., “Environmentally Friendly Flame-Retardant and its Application in Rigid Polyurethane Foam”, Int. J. Polym. Sci., 2014, 17 (2014) 10.1155/2014/263716Suche in Google Scholar

Ebert, L. B., “Intercalation Compounds of Graphite”, Annu. Rev. Mater. Res., 6, 181211 (1976) 10.1146/annurev.ms.06.080176.001145Suche in Google Scholar

GB/T 10297-1988, “Test Method for Thermal Conductivity of Nonmetal Solid Materials by Hot Wire Method”, 9–42 (2010)Suche in Google Scholar

Guo, Y. H., Guo, J. J., Han, Z. and Teng, L. J., “LDPE/LLDPE/APP Intumescent Flame Retardant Systems: Molding Parameters and Properties”, Adv. Mater. Res., 317–319, 112115 (2011) 10.4028/www.scientific.net/AMR.317–319.112Suche in Google Scholar

Hu, X. M., Wang, D. M., “Enhanced Fire Behavior of Rigid Polyurethane Foam by Intumescent Flame Retardants”, J. Appl. Polym. Sci., 129, 238246 (2013) 10.1002/app.38722Suche in Google Scholar

Kim, H. J., Kwon, Y. and Kim, C. K., “Mechanical Property and Thermal Stability of Polyurethane Composites Reinforced with Polyhedral Oligomeric Silsesquioxanes and Inorganic Flame Retardant Filler”, Nanosci. Nanotechnol., 14, 60486052 (2014) 10.1166/jnn.2014.8808Suche in Google Scholar PubMed

Kirpluks, M., Cabulis, U., Zeltins, V., Stiebra, L. and Avots, A., “Rigid Polyurethane Foam Thermal Insulation Protected with Mineral Intumescent Materials”, Autex Res. J., 14, 259269 (2014) 10.2478/aut-2014-0026Suche in Google Scholar

Li, Y. C., Yang, Y. H., Shields, J. R. and Davis, R. D., “Layered Double Hydroxide-Based Fire Resistant Coatings for Flexible Polyurethane Foam”, Polymer, 56, 284292 (2015) 10.1016/j.polymer.2014.11.023Suche in Google Scholar

Lia, H. F., Hua, Z. W., Zhang, S., Gu, X. Y., Wang, H. J., Jiang, P. and Zhao, Q., “Effects of Titanium Dioxide on the Flammability and Char Formation of Water-Based Coatings Containing Intumescent Flame Retardants”, Prog. Org. Coat., 78, 318324 (2015) 10.1016/j.porgcoat.2014.08.003Suche in Google Scholar

Lorenzetti, A., Modesti, M., Besco, S., Hrelja, D. and Donadi, S., “Influence of Phosphorus Valency On Thermal Behaviour of Flame Retarded Polyurethane Foams”, Polym. Degrad. Stab., 96, 14551461 (2011) 10.1016/j.polymdegradstab.2011.05.012Suche in Google Scholar

Modesti, M., Lorenzetti, A., Simioni, F. and Camino, G., “Expandable Graphite as an Intumescent Flame Retardant in Polyisocyanurate Polyurethane Foams”, Polym. Degrad. Stab., 77, 195202 (2002) 10.1016/S0141-3910(02)00034-4Suche in Google Scholar

Modesti, M. and Lorenzetti, A., “Flame Retardancy of Polyisocyanurate-Polyurethane Foams: Use of Different Charring Agents”, Polym. Degrad. Stab., 78, 341347 (2002) 10.1016/S0141-3910(02)00184-2Suche in Google Scholar

Mosurkal, R., Samuelson, L. A., Smith, K. D., Westmoreland, P. R., Parmar, V. S., Yan, F. D., Kumar, J. and Watterson, A. C., “Nanocomposites of TiO2 and Siloxane Copolymers as Environmentally Safe Flame-Retardant Materials”, J. Macromol. Sci. A., 45, 943947 (2008) 10.1080/10601320802380208Suche in Google Scholar

Paabo, M., Levin, B. C., “A Review of the Literature on the Gaseous Products and Toxicity Generated from the Pyrolysis and Combustion of Rigid Polyurethane Foams”, Fire Mater., 11, 129 (1987) 10.1002/fam.810110102Suche in Google Scholar

Pang, X. Y., Tian, Y. and Weng, M. Q., “Preparation of Expandable Graphite with Silicate Assistant Intercalation and its Effect on Flame Retardancy of Ethylene Vinyl Acetate Composite”, Polym. Compos., 36, 14071416 (2015) 10.1002/pc.23047Suche in Google Scholar

Seefeldt, H., Braun, U. and Wagner, M. H., “Residue Stabilization in the Fire Retardancy of Wood-Plastic Composites: Combination of Ammonium Polyphosphate, Expandable Graphite, and Red Phosphorus”, Macromol. Chem. Phys., 213, 23702377 (2012) 10.1002/macp.201200119Suche in Google Scholar

Shi, L., Li, Z. M., Xie, B. H., Wang, J. H., Tian, C. R. and Yang, M. B., “Flame Retardancy of Different-Sized Expandable Graphite Particles for High-Density Rigid Polyurethane Foams”, Polym. Int., 55, 862871 (2006) 10.1002/pi.2021Suche in Google Scholar

Shi, L., Li, Z. M., “Morphology Development of High-Density Rigid Polyurethane Foam upon Compression by On-Line Scanning Electronic Microscope”, J. Appl. Polym. Sci., 105, 20082011 (2007) 10.1002/app.26410Suche in Google Scholar

Shioyam, H., Fujii, R., “Electrochemical Reactions of Stage 1 Sulfuric Acid-Graphite Intercalation Compound”, Carbon, 25, 771774 (1987) 10.1016/0008-6223(87)90149-7Suche in Google Scholar

Shornikova, O. N., Dunaev, A. V., Maksimova, N. V. and Avdeev, V. V., “Synthesis and Properties of Ternary GIC with Iron or Copper Chlorides”, J. Phys. Chem. Solid., 67, 11931197 (2006) 10.1016/j.jpcs.2006.01.046Suche in Google Scholar

Singh, H., Jain, A. K., “Ignition, Combustion, Toxicity, and Fire Retardancy of Polyurethane Foams: A Comprehensive Review”, J. Appl. Polym. Sci., 111, 11151143 (2009) 10.1002/app.29131   Suche in Google Scholar

Song, K. M., Li, G. S., Feng, Y. L. and Yan, Q. Y., “Preparation of Low-Sulfur Expansible Graphite by Using Mixing Acid”, J. Inorg. Mater., 11, 749752 (1996)Suche in Google Scholar

Tarakcilar, A. R., “The Effects of Intumescent Flame Retardant Including Ammonium Polyphosphate/Pentaerythritol and Fly Ash Fillers on the Physicomechanical Properties of Rigid Polyurethane Foams”, J. Appl. Polym. Sci., 120, 20952102 (2011) 10.1002/app.33377Suche in Google Scholar

Thirumal, M., Khastgir, D., Singha, N. K., Manjunath, B. S. and Naik, Y. P., “Effect of Expandable Graphite on the Properties of Instrument Flame-Retardant Polyurethane Foam”, J. Appl. Polym. Sci., 110, 25862594 (2008) 10.1002/app.28763Suche in Google Scholar

Thirumal, M., Khastgir, D., Nando, G. B., Naik, Y. P. and Singha, N. K., “Halogen-Free Flame Retardant PUF: Effect of Melamine Compounds on Mechanical, Thermal and Flame Retardant Properties”, Polym. Degrad. Stab., 95, 11381145 (2010) 10.1016/j.polymdegradstab.2010.01.035Suche in Google Scholar

Wang, C. Q., Ge, F. Y., Sun, J. and Cai, Z. S., “Effects of Expandable Graphite and Dimethyl Methylphosphonate on Mechanical, Thermal, and Flame-Retardant Properties of Flexible Polyurethane Foams”, J. Appl. Polym. Sci., 130, 916926 (2013) 10.1002/app.39252Suche in Google Scholar

Weng, M. Q., “Preparation and Flame Retardancy of Transition Metal Oxide Modified Expendable Graphate”, MSc Thesis, Hebei University, Baoding, PRC (2016)Suche in Google Scholar

Wodarczak, D., “Studies of Temperature and Atmosphere Composition Influence on Thermal Degradation Products of Polyurethane Foam”, J. Appl. Polym. Sci., 36, 377386 (1988) 10.1002/app.1988.070360210Suche in Google Scholar

Xu, D. M., Hao, J. W. and Zhou, Y., “Combustion and Thermal Degradation Mechanism of Rigid Polyurethane Foams Modified with Expandable Graphite and Ammonium Polyphosphate”, T. Beijing Inst. Technol., 34, 644649 (2014)Suche in Google Scholar

Ye, L., Meng, X. Y., Liu, X. M., Tang, J. H. and Li, Z. M., “Flame-Retardant and Mechanical Properties of High-Density Rigid Polyurethane Foams Filled with Decabrominated Dipheny Ethane and Expandable Graphite”, J. Appl. Polym. Sci., 111, 23722380 (2009) 10.1002/app.29242Suche in Google Scholar

Zatorski, W., Brzozowski, Z. K. and Kolbrecki, A., “New Developments in Chemical Modification of Fire-Safe Rigid Polyurethane Foams”, Polym. Degrad. Stab., 93, 20712076 (2008) 10.1016/j.polymdegradstab.2008.05.032Suche in Google Scholar

Zhang, A. Z., Zhang, Y. H., Lv, F. Z. and Chu, P. K., “Synergistic Effects of Hydroxides and Dimethyl Methylphosphonate on Rigid Halogen-Free and Flame-Retarding Polyurethane Foams”, J. Appl. Polym. Sci., 128, 347353 (2013) 10.1002/app.38200Suche in Google Scholar

Zhao, H. M., Pang, X. Y. and Lin, R. N., “Preparation of Boric Acid Modified Expandable Graphite and its Influence on Polyethylene Combustion Characteristics”, J. Chil. Chem. Soc., 61, 27672771 (2016) 10.4067/S0717-97072016000100004Suche in Google Scholar

Zheng, Z. H., Yan, J. T., Sun, H. M., Cheng, Z. Q., Li, W. J., Wang, H. Y. and Cui, X. J., “Preparation and Characterization of Microencapsulated Ammonium Polyphosphate and its Synergistic Flame-Retarded Polyurethane Rigid Foams with Expandable Graphite”, Polym. Int., 63, 8492 (2014) 10.1002/pi.4477Suche in Google Scholar

Zhou, S. T., Lei, Y. Z., Zou, H. W. and Liang, M., “High Thermally Conducting Composites Obtained via in Situ Exfoliation Process of Expandable Graphite Filled Polyamide 6”, Polym. Compos., 34, 18161823 (2013) 10.1002/pc.22586Suche in Google Scholar

Zhou, Y., Hao, J. W., Liu, G. S. and Du, J. X., “Influencing Mechanism of Transition Metal Oxide on Thermal Decomposition of Ammonium Polyphosphate”, Chinese J. Inorg. Chem., 29, 11151122 (2013) 10.3969/j.issn.1001-4861.2013.00.193Suche in Google Scholar

Received: 2017-04-26
Accepted: 2017-06-15
Published Online: 2018-04-17
Published in Print: 2018-03-02

© 2018, Carl Hanser Verlag, Munich

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Regular Contributed Articles
  4. Semi-Rigid Composite Foams of Calcium Sodium Aluminosilicate from Eggshells Embedded in Polyurethane
  5. Effect of Spin-Draw Rate and Stretching Ratio on Polypropylene Hollow Fiber Membrane Made by Melt-Spinning and Stretching Method
  6. A Novel Non-Planar Transverse Stretching Process for Micro-Porous PTFE Membranes and Resulting Characteristics
  7. Photo-Degradation of Polypropylene-Ascorbic Acid TiO2 Composite Films
  8. Melt Flow and Flexural Properties of Polypropylene Composites Reinforced with Graphene Nano-Platelets
  9. Effect of the Addition of ENR on Foam Properties of EVA/NR/Clay Nanocomposites
  10. Development of High Pressure Injection Technology for Normal Hydraulic Injection Molding Machines
  11. Influence of Electron Induced Reactive Processing and Secondary Rubber Phase on Spinnability of Polypropylene and Polypropylene/Rubber Blends
  12. Monitoring of Injection Molding Tool Corrosion and Effects of Wood Plastic Compound's Moisture on Material Properties
  13. Simulation of Micropelletization Mechanisms in Polymer Melt – Air Systems
  14. Cross-Linked Hydrophobic Starch Granules in Blends with PLA
  15. Numerical Predictions of Fiber Orientation for Injection Molded Rectangle Plate and Tensile Bar with Experimental Validations
  16. Fabrication of Polyethylene Terephthalate Microfluidic Chip Using CO2 Laser System
  17. Minimization of Warpage for Injection Molded Parts by Inverse Thermal Mold Design
  18. Influence of Titanium Dioxide Modified Expandable Graphite and Ammonium Polyphosphate on Combustion Behavior and Physicomechanical Properties of Rigid Polyurethane Foam
  19. Preparation, Foaming and Characterization of Poly(l-lactic acid))/Poly(d-lactic acid)-Grafted Graphite Oxide Blends
  20. A Simple Method of Fabricating Graphene-Polymer Conductive Films
  21. PPS News
  22. PPS News
  23. Seikei Kakou Abstracts
  24. Seikei-Kakou Abstracts
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.3489/html
Button zum nach oben scrollen