Startseite Cross-Linked Hydrophobic Starch Granules in Blends with PLA
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cross-Linked Hydrophobic Starch Granules in Blends with PLA

  • J. Fuchs , M. Feldmann , C. Aßmann , W. Vorwerg und H.-P. Heim
Veröffentlicht/Copyright: 17. April 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The majority of native starch is used in the food sector and in the paper industry. Only a small amount is used in polymer engineering. One reason for the reluctance of the plastics processing industry to use starch as a filling material in polymer blends is the unsatisfactory mechanical behavior of starch when combined with thermoplastics. Another reason is the hydrophilicity of starch. In order to make these materials capable of competing, an amelioration of the mechanical properties is compulsory. By means of modifying the native starch and optimizing the compounding process, it is possible to improve the performance of starch blends, and, thus, increase the number of application areas of these materials. For this reason, native starch was modified with a cross-linking agent using a laboratory mixer. Subsequently, the modified starch and poly(lactic acid) were compounded using a co-rotating twin screw extruder. Cross-linking of the native starch in the laboratory mixer resulted in an increase in the mechanical strength of the starch blends. In addition, the blends with cross-linked starch displayed lower moisture absorption levels than blends with native starch as a filling material.


*Correspondence address, Mail address: Johannes Fuchs, Institute of Material Engineering, Polymer Engineering, University of Kassel, Moenchebergstrasse 3, 34125 Kassel, Germany, E-mail:

References

Avérous, L., Halley, P. J., “Biocomposites Based on Plasticized Starch”, Biofuels, Bioprod. Biorefin., 3, 329343 (2009) 10.1002/bbb.135Suche in Google Scholar

Beg, M. D. H., Kormin, S., Bijarimi, M. and Zaman, Haydar U., “Preparation and Characterization of Low-Density Polyethylene/Thermoplastic Starch Composites”, Adv. Polym. Technol., 35, n/a-n/a (2016) 10.1002/adv.21521Suche in Google Scholar

Bin-Dahman, O. A., Jose, J. and Al-Harthi, M. A., “Compatibility of Poly(acrylic acid)/starch blends”, Starch-Stärke, 67, 10611069 (2015) 10.1002/star.201500011Suche in Google Scholar

Chen, C.-J., Shen, Y.-C. and Yeh, A.-I., “Physico-Chemical Characteristics of Media-Milled Corn Starch”, J. Agric. Food Chem., 58, 90839091 (2010) 20681547 10.1021/jf1020945Suche in Google Scholar

Ellis, R. P., Cochrane, M. P., Dale, M. F. B., Duffus, C. M., Lynn, A., Morrison, I. M., Prentice, R. D. M., Swanston, J. S. and Tiller, S. A., “Starch Production and Industrial Use”, J. Sci. Food Agric., 77, 289311 (1998) 10.1002/(SICI)1097-0010(199807)77:3<289::AID-JSFA38>3.0.CO;2-DSuche in Google Scholar

Feldmann, M., Fuchs, J., “Chapter 5 Injection Molding of Bio-Based Plastics, Polymers, and Composites”, in Specialized Injection Molding Techniques, Heim, H.-P. (Ed.), Elsevier, Oxford, p. 211237 (2015)10.1016/B978-0-323-34100-4.00005-5Suche in Google Scholar

Fink, H.-P., Ebeling, H. and Vorwerg, W., “Technologien der Cellulose- und Stärkeverarbeitung“, Chem. Ing. Tech., 81, 17571766 (2009) 10.1002/cite.200900082Suche in Google Scholar

Hu, H., Liu, W., Shi, J., Huang, Z., Zhang, Y., Huang, A., Yang, M., Qin, X. and Shen, F., “Structure and Functional Properties of Octenyl Succinic Anhydride Modified Starch Prepared ba a Non-Conventional Technology”, Starch-Stärke, 68, 151159 (2016) 10.1002/star.201500195Suche in Google Scholar

Huneault, M. A., Li, H., “Preparation and Properties of Extruded Thermoplastic Starch/Polymer Blends”, J. Appl. Polym. Sci., 126, E96E108 (2012) 10.1002/app.36724Suche in Google Scholar

Jacobsen, S., Fritz, H. G., “Filling of Poly(lactic acid) with Native Starch”, Polym. Eng. Sci., 36, 27992804 (1996) 10.1002/pen.10680Suche in Google Scholar

Kartha, K. P. R., Srivastava, H. C., “Reaction of Epichlorhydrin with Carbohydrate Polymers. Part II. Starch Reaction Mechanism and Physicochemical Properties of Modified Starch”, Starch-Stärke, 37, 297306 (1985) 10.1002/star.19850370905Suche in Google Scholar

Ke, T., Sun, X., “Effects of Moisture Content and Heat Treatment on the Physical Properties of Starch and Poly(lactic acid) Blends”, J. Appl. Polym. Sci., 81, 30693082 (2001) 10.1002/app.1758Suche in Google Scholar

Kovács, J. G., T.Tabi, “Examination of Starch Preprocess Drying and Water Absorption of Injection-Molded Starch-Filled Poly(lactic acid) Products”, Polym. Eng. Sci., 51, 843850 (2011) 10.1002/pen.21900Suche in Google Scholar

Kuniak, L., Marchessault, R. H., “Study of the Crosslinking Reaction between Epichlorohydrin and Starch”, Starch-Stärke, 24, 110116 (1972) 10.1002/star.19720240404Suche in Google Scholar

Lai, S.-M., Don, T.-M. and Huang, Y.-C., “Preparation and Properties of Biodegradable Thermoplastic Starch/Poly(hydroxy butyrate) Blends”, J. Appl. Polym. Sci., 100, 23712379 (2006) 10.1002/app.23085Suche in Google Scholar

Lai, S.-M., Sun, W.-W. and Don, T.-M., “Preparation and Characterization of Biodegradable Polymer Blends from Poly(3-hydroxybutyrate)/Poly(vinyl acetate)-Modified Corn Starch”, Polym. Eng. Sci., 55, 13211329 (2015) 10.1002/pen.24071Suche in Google Scholar

Lawal, M. V., Odeniyi, M. A. and Itiola, O. A., “Material and Rheological Properties of Native, Acetylated, and Pregelatinized Forms of Corn, Cassava, and Sweet Potato Starches”, Starch-Stärke, 67, 964975 (2015) 10.1002/star.201500044Suche in Google Scholar

Liu, X., Khor, S., Petinakis, E., Yu, L., Simon, G., Dean, K. and Bateman, S., “Effects of Hydrophilic Fillers on the Thermal Degradation of Poly(lactic acid)”, Thermochim. Acta, 509, 147151 (2010) 10.1016/j.tca.2010.06.015Suche in Google Scholar

Mathew, A. P., Dufresne, A., “Plasticized Waxy Maize Starch: Effect of Polyols and Relative Humidity on Material Properties”, Biomacromolecules, 3, 11011108 (2002) 12217059 10.1021/bm020065pSuche in Google Scholar PubMed

Mittal, V., Akhtar, T. and Matsko, N., “Mechanical, Thermal, Rheological and Morphological Properties of Binary and Ternary Blends of PLA, TPS and PCL”, Macromol. Mater. Eng., 300, 423435 (2015) 10.1002/mame.201400332Suche in Google Scholar

Nabar, Y. U., Draybuck, D. and Narayan, R., “Physicomechanical and Hydrophobic Properties of Starch Foams Extruded with Different Biodegradable Polymers”, J. Appl. Polym. Sci., 102, 5868 (2006) 10.1002/app.22127Suche in Google Scholar

Radosta, S., Kiessler, B., Vorwerg, W. and Brenner, T., “Molecular Composition of Surface Sizing Starch Prepared Using Oxidation, Enzymatic Hydrolysis and Ultrasonic Treatment Methods”, Starch-Stärke, 68, 541548 (2016) 10.1002/star.201500314Suche in Google Scholar

Roy, S. B., Ramaraj, B., Shit, S. C. and Nayak, S. K., “Polypropylene and Potato Starch Biocomposites: Physicomechanical And Thermal Properties”, J. Appl. Polym. Sci., 120, 30783086 (2011) 10.1002/app.33486Suche in Google Scholar

Salimi, K., Topuzogullari, M., Dincer, S., Aydin, H. M. and Piskin, E., “Microwave-assisted Green Approach for Graft Copolymerization of l-Lactic Acid onto Starch”, J. Appl. Polym. Sci., 133, n/a-n/a (2016) 10.1002/app.42937Suche in Google Scholar

Sangeetha, V. H., Deka, H., Varghese, T. O. and Nayak, S. K., “State of the Art and Future Prospectives of Poly(lactic acid) Based Blends and Composites”, Polym. Compos., (2016) 10.1002/pc.23906Suche in Google Scholar

Schwach, E., Avérous, L., “Starch-Based Biodegradable Blends: Morphology and Interface Properties”, Polym. Int., 53, 21152124 (2004) 10.1002/pi.1636Suche in Google Scholar

Shi, L., Cheng, F., Zhu, P.-X. and Lin, Y., “Physicochemical Changes of Maize Starch Treated by Ball Milling with Limited Water Content”, Starch-Stärke, 67, 772779 (2015) 10.1002/star.201500026Suche in Google Scholar

Sujka, M., Cie la, K. and Jamroz, J., “Structure and Selected Functional Properties of Gamma-Irradiated Potato Starch”, Starch-Stärke, 67, 10021010 (2015) 10.1002/star.201500113Suche in Google Scholar

Thakore, I. M., Iyer, S., Desai, A., Lele, A. and Devi, S., “Morphology, Thermomechanical Properties, and Biodegradability of Low Density Polyethylene/Starch Blends”, J. Appl. Polym. Sci., 74, 27912802 (1999) 10.1002/(SICI)1097-4628(19991213)74:12<2791::AID-APP2>3.0.CO;2-4Suche in Google Scholar

Vyazovkin, S., “Model-Free Kinetics: Staying Free of Multiplying Entities without Necessity”, J. Therm. Anal. Calorim., 83, 4551 (2006) 10.1007/s10973-005-7044-6Suche in Google Scholar

Wang, N., Yu, J. and Ma, X., “Preparation and Characterization of Thermoplastic Starch/PLA Blends by One-Step Reactive Extrusion”, Polym. Int., 56, 14401447 (2007) 10.1002/pi.2302Suche in Google Scholar

Wu, X. S., “Effect of Glycerin and Starch Crosslinking on Molecular Compatibility of Biodegradable Poly(lactic acid)-Starch Composites”, J. Polym. Environ., 19, 912917 (2011) 10.1007/s10924-011-0298-0Suche in Google Scholar

Yang, Q., Yang, Y., Luo, Z., Xiao, Z., Ren, H., Li, D. and Yu, J., “Effects of Lecithin Addition on the Properties of Extruded Maize Starch”, J. Food Process. Preserv., 40, 2028 (2015) 10.1111/jfpp.12579Suche in Google Scholar

Yu, L., Dean, K. and Li, L., “Polymer Blends and Composites from Renewable Resources”, Prog. Polym. Sci., 31, 576602 (2006) 10.1016/j.progpolymsci.2006.03.002Suche in Google Scholar

Yu, L., Petinakis, E., Dean, K., Liu, H. and Yuan, Q., “Enhancing Compatibilizer Function by Controlled Distribution in Hydrophobic Polylactic Acid/Hydrophilic Starch Blends”, J. Appl. Polym. Sci., 119, 21892195 (2011) 10.1002/app.32949Suche in Google Scholar

Zerroukhi, A., Jeanmaire, T., Raveyre, C. and Ainser, A., “Synthesis and Characterization of Hydrophobically Modified Starch by Ring Opening Polymerization Using Imidazole as Catalyst”, Starch-Stärke, 64, 613620 (2012) 10.1002/star.201100154Suche in Google Scholar

Zhang, J.-F., Sun, X., “Mechanical Properties of Poly(lactic acid)/Starch Composites Compatibilized by Maleic Anhydride”, Biomacromolecules, 5, 14461451 (2004) 15244463 10.1021/bm0400022Suche in Google Scholar PubMed

Received: 2016-12-15
Accepted: 2017-05-29
Published Online: 2018-04-17
Published in Print: 2018-03-02

© 2018, Carl Hanser Verlag, Munich

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Regular Contributed Articles
  4. Semi-Rigid Composite Foams of Calcium Sodium Aluminosilicate from Eggshells Embedded in Polyurethane
  5. Effect of Spin-Draw Rate and Stretching Ratio on Polypropylene Hollow Fiber Membrane Made by Melt-Spinning and Stretching Method
  6. A Novel Non-Planar Transverse Stretching Process for Micro-Porous PTFE Membranes and Resulting Characteristics
  7. Photo-Degradation of Polypropylene-Ascorbic Acid TiO2 Composite Films
  8. Melt Flow and Flexural Properties of Polypropylene Composites Reinforced with Graphene Nano-Platelets
  9. Effect of the Addition of ENR on Foam Properties of EVA/NR/Clay Nanocomposites
  10. Development of High Pressure Injection Technology for Normal Hydraulic Injection Molding Machines
  11. Influence of Electron Induced Reactive Processing and Secondary Rubber Phase on Spinnability of Polypropylene and Polypropylene/Rubber Blends
  12. Monitoring of Injection Molding Tool Corrosion and Effects of Wood Plastic Compound's Moisture on Material Properties
  13. Simulation of Micropelletization Mechanisms in Polymer Melt – Air Systems
  14. Cross-Linked Hydrophobic Starch Granules in Blends with PLA
  15. Numerical Predictions of Fiber Orientation for Injection Molded Rectangle Plate and Tensile Bar with Experimental Validations
  16. Fabrication of Polyethylene Terephthalate Microfluidic Chip Using CO2 Laser System
  17. Minimization of Warpage for Injection Molded Parts by Inverse Thermal Mold Design
  18. Influence of Titanium Dioxide Modified Expandable Graphite and Ammonium Polyphosphate on Combustion Behavior and Physicomechanical Properties of Rigid Polyurethane Foam
  19. Preparation, Foaming and Characterization of Poly(l-lactic acid))/Poly(d-lactic acid)-Grafted Graphite Oxide Blends
  20. A Simple Method of Fabricating Graphene-Polymer Conductive Films
  21. PPS News
  22. PPS News
  23. Seikei Kakou Abstracts
  24. Seikei-Kakou Abstracts
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.3407/html
Button zum nach oben scrollen