Startseite Melt Flow and Flexural Properties of Polypropylene Composites Reinforced with Graphene Nano-Platelets
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Melt Flow and Flexural Properties of Polypropylene Composites Reinforced with Graphene Nano-Platelets

  • J. Z. Liang und Q. Du
Veröffentlicht/Copyright: 17. April 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The effects of graphene nano-platelets (GNPs) content on melt flow behavior and flexural properties of reinforced polypropylene (PP) composites were investigated. The results showed that both the flexural modulus and strength at room temperature increased when GNPs weight fraction was lower than 0.4 wt.%, and then decreased with increasing GNPs weight fraction. During the melt flow of the PP composites in capillary extrusion within temperatures ranging from 180 to 230 °C and in apparent shear rates varying from 100 to 4 000 s−1, the melt shear flow followed the power law relationship, and the dependence of the melt shear viscosity on temperature obeyed the Arrhenius equation. The correlation between the melt shear viscosity and GNPs weight fraction was approximately linear under the given test conditions.


*Correspondence address, Mail address: Ji-Zhao Liang, Research Division of Green Function Materials and Equipment, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, PRC, E-mail:

References

Ansari, S., Giannelis, E. P., “Functionalized Graphene Sheet-Poly(vinylidene fluoride) Conductive Nanocomposites”, J. Polym. Sci., 47, 888897 (2009) 10.1002/polb.21695Suche in Google Scholar

Asgari, M., Masoomi, M., “Tensile and Flexural Properties of Polypropylene/Short Poly(ethylene terephthalate) Fibre Composites Compatibilized with Glycidyl Methacrylate and Maleic Anhydride”, J. Thermoplast. Compos. Mater., 28, 357371 (2015) 10.1177/0892705713484748Suche in Google Scholar

GhoshS., Calizo, I., Teweldebrhan, D., Pokatilov, E. P., Nika, D. L., Balandin, A. A., Bao, W., Miao, F. and Lau, C. N., “Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits”, Appl. Phys. Lett., 92, 151911151913 (2008) 10.1063/1.2907977Suche in Google Scholar

Garcia-Martinez, J. M., Collar, E. P., “Flexural Behavior of PP/Mica Composites Interfacial Modified by a P-Phenylen-Bis-Maleamic Acid Grafted Atactic Polypropylene Modifier Obtained from Industrial Wastes”, J. Appl. Polym. Sci., 132 (2015) 10.1002/app.42437Suche in Google Scholar

Han, Y. Q., Wu, Y., Shen, M. X., Huang, X. L., Zhu, J. J. and Zhang, X.G., “Preparation and Properties of Polystyrene Nanocomposites with Graphite Oxide and Graphene as Flame Retardants”, J. Mater. Sci., 48, 42144222 (2013) 10.1007/s10853-013-7234-8Suche in Google Scholar

Huang, G. B., Gao, J. R., Wang, X., Liang, H. D. and Ge, C. H., “How Can Graphene Reduce the Flammability of Polymer Nanocomposites”, Mater. Lett., 66, 187189 (2012) 10.1016/j.matlet.2011.08.063Suche in Google Scholar

Inuwa, I. M., Hassan, A., Wang, D. Y., Samsudin, S. A., Haafiz, M. K. M., Wong, S. L. and Jawaid, M., “Influence of Exfoliated Graphite Nanoplatelets on the Flammability and Thermal Properties of Polyethylene Terephthalate/Polypropylene Nanocomposites”, Polym. Degrad. Stab., 110, 137148 (2014) 10.1016/j.polymdegradstab.2014.08.025Suche in Google Scholar

Inuwa, I. M., Hassan, A., Samsudin, S. A., Kassim, M. H. M. and Jawaid, M., “Mechanical and Thermal Properties of Exfoliated Graphite Nanoplatelets Reinforced Polyethylene Terephthalate/Polypropylene Composites”, Polym. Compos., 35, 20292035 (2014) 10.1002/pc.22863Suche in Google Scholar

Kai, W. H., Hirota, Y., Hua, L. and Inoue, Y., “Thermal and Mechanical Properties of a Poly(∊-caprolactone)/Graphite Oxide Composite”, J. Appl. Polym. Sci., 107, 13951400 (2008) 10.1002/app.27210Suche in Google Scholar

Kalantari, B., Mojtahedi, M. R. M., Sharif, F. and Rahbar, R. S., “Effect of Graphene Nanoplatelets Presence on the Morphology, Structure, and Thermal Properties of Polypropylene in Fiber Melt-Spinning Process”, Polym. Compos., 36, 367375 (2015) 10.1002/pc.22951Suche in Google Scholar

Kalantari, B., Mojtahedi, M. R. M., SharifF. and Rahbar, R.S., “Flow-Induced Crystallization of Polypropylene in the Presence of Graphene Nanoplatelets and Relevant Mechanical Properties in Nanocompsoite Fibres”, Compos. Part A.76, 203214 (2015) 10.1016/j.compositesa.2015.05.028Suche in Google Scholar

Kim, H., Miura, Y. and Macosko, C. W., “Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity”, Chem. Mater., 22, 34413450 (2010) 10.1021/cm100477vSuche in Google Scholar

Liang, J. J., Xu, Y. F., Huang, Y., Zhang, L., Wang, Y., Ma, Y. F., Li, F. F., Guo, T. Y. and Chen, Y. S., “Infrared-Triggered Actuators from Graphene-Based Nanocomposites”, J. Phys. Chem. C, 113, 99219927 (2009)Suche in Google Scholar

Liang, J. J., Xu, Y. F., Huang, Y., Zhang, L., Wang, Y., Ma, Y. F., Li, F. F., Guo, T. Y. and Chen, Y. S., “Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites”, Adv. Funct. Mater., 19, 22972302 (2009) 10.1002/adfm.200801776Suche in Google Scholar

Liang, J. J., Wang, Y., Huang, Y., Ma, Y. F., Liu, Z. F., Cai, J. M., Zhang, C. D., Gao, H. J. and Chen, Y. S., “Electromagnetic Interference Shielding of Graphene/Epoxy Composites”, Carbon, 47, 922925 (2009) 10.1016/j.carbon.2008.12.038Suche in Google Scholar

Liang, J. Z., Feng, J. Q., Zou, S. Y., Liu, D. F. and Zhang, S. D., “Flame-Retardant Properties and Flexural Properties of Polypropylene/Intumescent Composites”, Adv. Polym. Technol., 34 (2015) 10.1002/adv.21504Suche in Google Scholar

Liang, J. Z., Tang, C. Y., Zhou, L., Tsui, C. P. and Li, F. J., “Melt Flow Behavior in Capillary Extrusion of Nanosized Calcium Carbonate Filled Poly(L-lactic acid) Bio-Composites”, Polym. Eng. Sci., 52, 18301844 (2012) 10.1002/pen.23130Suche in Google Scholar

Liang, J. Z., Zhou, L., Tang, C. Y., Tsui, C. P. and Li, F. J., “Melt Flow Behavior in Capillary Extrusion of Nanometer Calcium Carbonate Filled PCL Bio-Composites”, Polym. Test., 31, 149154 (2012) 10.1016/j.polymertesting.2011.10.006Suche in Google Scholar

Liang, J. Z., Du, Q., Wei, L. Y., Tsui, C. P., Tang, C. Y., Law, W. C. and Zhang, S. D., “Melt Extrudate Swell Behavior of Graphene Nano-Platelets Filled-Polypropylene Composites”, Polym. Test., 45, 179184 (2015) 10.1016/j.polymertesting.2015.05.002Suche in Google Scholar

Liang, J. Z., Li, B. and Ruan, J. Q., “Crystallization Properties and Thermal Stability of Polypropylene Composites Filled with Wollastonite”, Polym. Test., 42, 185191 (2015) 10.1016/j.polymertesting.2015.01.017Suche in Google Scholar

Liang, J. Z.: Rheology in Polymer Materials Processing, National Defense Industry Press, Beijing (2007)Suche in Google Scholar

Liu, S., Yan, H. Q., Fang, Z. P. and Wang, H., “Effect of Graphene Nanosheets on Morphology, Thermal Stability and Flame Retardancy of Epoxy Resin”, Compos. Sci. Technol., 90, 4047 (2014) 10.1016/j.compscitech.2013.10.012Suche in Google Scholar

Ramanathan, T., Abdala, A. A., Stankovich, S., Dikin, D. A., Herrera-Alonso, M., Piner, R. D., Adamson, D. H., Schniepp, H. C., Chen, X. and Ruoff, R. S., “Functionalized Graphene Sheets for Polymernanocomposites”, Nature Nanotechnol., 3, 327331 (2008) 18654541 10.1038/nnano.2008.96Suche in Google Scholar PubMed

Wang, J. C., Wang, X. B., Xu, C. H., Zhang, M. and Shang, X. P., “Preparation of Graphene/Poly(vinyl alcohol) Nanocomposites with Enhanced Mechanical Properties and Water Resistance”, Polym. Int., 60, 816822 (2011) 10.1002/pi.3025Suche in Google Scholar

Received: 2016-07-24
Accepted: 2017-06-19
Published Online: 2018-04-17
Published in Print: 2018-03-02

© 2018, Carl Hanser Verlag, Munich

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Regular Contributed Articles
  4. Semi-Rigid Composite Foams of Calcium Sodium Aluminosilicate from Eggshells Embedded in Polyurethane
  5. Effect of Spin-Draw Rate and Stretching Ratio on Polypropylene Hollow Fiber Membrane Made by Melt-Spinning and Stretching Method
  6. A Novel Non-Planar Transverse Stretching Process for Micro-Porous PTFE Membranes and Resulting Characteristics
  7. Photo-Degradation of Polypropylene-Ascorbic Acid TiO2 Composite Films
  8. Melt Flow and Flexural Properties of Polypropylene Composites Reinforced with Graphene Nano-Platelets
  9. Effect of the Addition of ENR on Foam Properties of EVA/NR/Clay Nanocomposites
  10. Development of High Pressure Injection Technology for Normal Hydraulic Injection Molding Machines
  11. Influence of Electron Induced Reactive Processing and Secondary Rubber Phase on Spinnability of Polypropylene and Polypropylene/Rubber Blends
  12. Monitoring of Injection Molding Tool Corrosion and Effects of Wood Plastic Compound's Moisture on Material Properties
  13. Simulation of Micropelletization Mechanisms in Polymer Melt – Air Systems
  14. Cross-Linked Hydrophobic Starch Granules in Blends with PLA
  15. Numerical Predictions of Fiber Orientation for Injection Molded Rectangle Plate and Tensile Bar with Experimental Validations
  16. Fabrication of Polyethylene Terephthalate Microfluidic Chip Using CO2 Laser System
  17. Minimization of Warpage for Injection Molded Parts by Inverse Thermal Mold Design
  18. Influence of Titanium Dioxide Modified Expandable Graphite and Ammonium Polyphosphate on Combustion Behavior and Physicomechanical Properties of Rigid Polyurethane Foam
  19. Preparation, Foaming and Characterization of Poly(l-lactic acid))/Poly(d-lactic acid)-Grafted Graphite Oxide Blends
  20. A Simple Method of Fabricating Graphene-Polymer Conductive Films
  21. PPS News
  22. PPS News
  23. Seikei Kakou Abstracts
  24. Seikei-Kakou Abstracts
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.3335/html
Button zum nach oben scrollen