Home Physical Sciences Photo-Degradation of Polypropylene-Ascorbic Acid TiO2 Composite Films
Article
Licensed
Unlicensed Requires Authentication

Photo-Degradation of Polypropylene-Ascorbic Acid TiO2 Composite Films

  • T. Soitong
Published/Copyright: April 17, 2018
Become an author with De Gruyter Brill

Abstract

The surface modification of titanium dioxide (TiO2), which can be easily attained by a simple addition of ascorbic acid (AA) to aqueous TiO2 suspensions, affects the photodegradation. Surface modification results in the formation of a colored surface complex that causes red shift in the absorption threshold of TiO2. Photodegradable polypropylene (PP) composite films were prepared by embedding AA modified nano TiO2 into the PP matrix (PP/(AA/TiO2)). The photocatalytic degradation behavior of PP/(AA/TiO2) composite film under UV light irradiation as investigated and compared with those of the PP/TiO2 and neat PP films, with the aid of UV-Vis spectroscopy, Fourier Transform Infrared spectroscopy, weight loss monitoring, tensile test and scanning electron microscopy. The degradation rate of the PP/(AA/TiO2) composite films is three times higher than that of PP/TiO2 film and six times higher than that of neat PP film. In addition, the FTIR spectra show that the intensity of the peak of carbonyl group for neat PP is much lower than that of the composite film.


*Correspondence address, Mail addess: Tawat Soitong, Program in Materials Science, Faculty of Science, Maejo University, Chiang Mai, 50290, Thailand, E-mail:

References

Blakey, I., George, G. A., “Raman Spectral Mapping of Photo-Oxidised Polypropylene”, Polym. Degrad. Stab., 70, 269275 (2000) 10.1016/S0141-3910(00)00126-9Search in Google Scholar

Butler, C. H., Whitmore, P. M., “Measurement of Peroxides in the Volatile Degradation Products of Polypropylene Photooxidation”, Polym. Degrad. Stab., 98, 471473 (2013) 10.1016/j.polymdegradstab.2012.10.004Search in Google Scholar

Fa, W., Zan, L., Gong, C., Zhong, J. and Deng, K., “Solid-Phase Photocatalytic Degradation of Polystyrene with TiO2 Modified by Iron (II) Phthalocyanine”, Appl. Catal., B, 79, 216223 (2008) 10.1016/j.apcatb.2007.10.018Search in Google Scholar

Feng, W., Yuan, L. H., Zhen, S. Y., Huang, G. L., Qiao, J. L. and Zhou, Y., “The Effect of p-tert-butylcalix[n]arene on γ-Radiation Degradation of Polypropylene”, Radiat. Phys. Chem., 57, 425429 (2000) 10.1016/S0969-806X(99)00451-XSearch in Google Scholar

Forhad, M., Seema, S., Matin, R., Rahaman, J., Sarker, R. B., Garfur, A. and Bhuiyan, A. H., “Improved Performance of Isotactic Polypropylene/Titanium Dioxide Composites: Effect of Processing Conditions and Filler Content”, Polym. Degrad. Stab., 94, 183188 (2009) 10.1016/j.polymdegradstab.2008.11.006Search in Google Scholar

Garca-Montelongo, X. L., Martinez-de la Cruz, A., Vazquez-Rodriguez, S. and Torres-Martinez, L. M., “Photooxidative Degradation of TiO2/Polypropylene Films”, Mater. Res. Bull., 51, 5662 (2014) 10.1016/j.materresbull.2013.11.040Search in Google Scholar

Jansson, A., Moller, K. and Gevert, T., “Degradation of Post-Consumer Polypropylene Materials Exposed to Simulated Recycling-Mechanical Properties”, Polym. Degrad. Stab., 82, 3746 (2003) 10.1016/S0141-3910(03)00160-5Search in Google Scholar

Ling, Z., WenjunF. and SonglinW., “Novel Photodegradable Low-Density Polyethylene–TiO2 Nanocomposite Film”, Environ. Sci. Technol., 40, 16811685 (2006) 10.1021/es051173xSearch in Google Scholar PubMed

Muthukumar, T., Aravinthan, A. and Mukesh, D., “Effect of Environment on the Degradation of Starch and Pro-Oxidant Blended Polyolefins”, Polym. Degrad. Stab., 95, 19881993 (2010) 10.1016/j.polymdegradstab.2010.07.017Search in Google Scholar

Ou, Y., Lin, J. -D., Zou, H. -M. and Liao, D. -W., “Effects of Surface Modification of TiO2 with Ascorbic Acid on Photocatalytic Decolorization of an Azo Dye Reactions and Mechanisms”, J. Mol. Catal. A: Chem., 241, 5964 (2005) 10.1016/j.molcata.2005.06.054Search in Google Scholar

Park, D. R., “Photocatalytic Oxidation of Ethylene to CO2 and H2O on Ultrafine Powdered TiO2 Photocatalysts in the Presence of O2 and H2O”, J. Catal., 185, 114119 (1999) 10.1006/jcat.1999.2472Search in Google Scholar

Rajh, T., Nedeljkovic, J. M., Chen, L. X., Poluektov, O. and ThurnauerM. C., “Improving Optical and Charge Separation Properties of Nanocrystalline TiO2 by Surface Modification with Vitamin C”, J. Phys. Chem. B, 103, 35153519 (1999) 10.1021/jp9901904Search in Google Scholar

Ren, H. T., Jia, S.-Y., Wu, S.-H., Liu, Y. and Han, X., “Ascorbic Acid-Assisted Synthesis of TiO2 with Controllable Phases and Highly Reactive Facets”, Mater. Lett., 101, 6971 (2003) 10.1016/j.matlet.2013.03.078Search in Google Scholar

Tajh, T., “Improving Optical and Charge Separation Properties of Nanocrystalline TiO2 by Surface Modification with Vitamin C”, J. Phys. Chem. B., 103, 35153519 (1999) 10.1021/jp9901904Search in Google Scholar

Turton, T. J., White, J. R., “Effect of Stabilizer and Pigment on Photo-Degradation Depth Profiles in Polypropylene”, Polym. Degrad. Stab., 74, 559568 (2001) 10.1016/S0141-3910(01)00193-8Search in Google Scholar

Xagas, A. P., Bernard, M. C., Hugot-Le Goff, A., Spyrellis, N., Loizos, Z. and Falaras, P., “Surface Modification and Photosensitisation of TiO2 Nanocrystalline Films with Ascorbic Acid”, J. Photochem. Photobiol. A, 132, 115120 (2000) 10.1016/S1010-6030(00)00202-1Search in Google Scholar

Yang, C., Gong, C., Peng, T., Deng, K. and Zan, L., “High Photocatalytic Degradation Activity of the Polyvinyl Chloride (PVC)-Vitamin C (VC)-TiO2 Nano-Composite Film”, J. Hazard. Mater., 178, 152156 (2010) 20138426 10.1016/j.jhazmat.2010.01.056Search in Google Scholar PubMed

Zhao, X., Li, Z., Chen, Y., Shi, L. and Zhu, Y., “Solid-Phase Photocatalytic Degradation of Polyethylene Plastic under UV and Solar Light Irradiation”, J. Mol. Catal. A: Chem., 268, 101106 (2007) 10.1016/j.molcata.2006.12.012Search in Google Scholar

Zhao, X., Li, Z., Chen, Y., Shi, L. and Zhu, Y., “Enhancement of Photocatalytic Degradation of Polyethylene Plastic with CuPC Modified TiO2 Photocatalyst under Solar Light Irradiation”, Appl. Surf. Sci., 254, 18251829 (2008) 10.1016/j.apsusc.2007.07.154Search in Google Scholar

Received: 2016-06-24
Accepted: 2017-06-19
Published Online: 2018-04-17
Published in Print: 2018-03-02

© 2018, Carl Hanser Verlag, Munich

Articles in the same Issue

  1. Contents
  2. Contents
  3. Regular Contributed Articles
  4. Semi-Rigid Composite Foams of Calcium Sodium Aluminosilicate from Eggshells Embedded in Polyurethane
  5. Effect of Spin-Draw Rate and Stretching Ratio on Polypropylene Hollow Fiber Membrane Made by Melt-Spinning and Stretching Method
  6. A Novel Non-Planar Transverse Stretching Process for Micro-Porous PTFE Membranes and Resulting Characteristics
  7. Photo-Degradation of Polypropylene-Ascorbic Acid TiO2 Composite Films
  8. Melt Flow and Flexural Properties of Polypropylene Composites Reinforced with Graphene Nano-Platelets
  9. Effect of the Addition of ENR on Foam Properties of EVA/NR/Clay Nanocomposites
  10. Development of High Pressure Injection Technology for Normal Hydraulic Injection Molding Machines
  11. Influence of Electron Induced Reactive Processing and Secondary Rubber Phase on Spinnability of Polypropylene and Polypropylene/Rubber Blends
  12. Monitoring of Injection Molding Tool Corrosion and Effects of Wood Plastic Compound's Moisture on Material Properties
  13. Simulation of Micropelletization Mechanisms in Polymer Melt – Air Systems
  14. Cross-Linked Hydrophobic Starch Granules in Blends with PLA
  15. Numerical Predictions of Fiber Orientation for Injection Molded Rectangle Plate and Tensile Bar with Experimental Validations
  16. Fabrication of Polyethylene Terephthalate Microfluidic Chip Using CO2 Laser System
  17. Minimization of Warpage for Injection Molded Parts by Inverse Thermal Mold Design
  18. Influence of Titanium Dioxide Modified Expandable Graphite and Ammonium Polyphosphate on Combustion Behavior and Physicomechanical Properties of Rigid Polyurethane Foam
  19. Preparation, Foaming and Characterization of Poly(l-lactic acid))/Poly(d-lactic acid)-Grafted Graphite Oxide Blends
  20. A Simple Method of Fabricating Graphene-Polymer Conductive Films
  21. PPS News
  22. PPS News
  23. Seikei Kakou Abstracts
  24. Seikei-Kakou Abstracts
Downloaded on 16.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/217.3315/html
Scroll to top button