Nanoindentation study on Al86Ni8Y6 glassy alloy synthesized via mechanical alloying and spark plasma sintering
-
Ram Sajeevan Maurya
, Ashutosh Sahu und Tapas Laha
Abstract
The present work is focused on the investigation of hardness and scratch behavior of mechanically alloyed and various temperature (300 °C–500 °C) spark plasma sintered Al86Ni8Y6 glassy alloys. Glassy alloy sintered at higher temperature, exhibited significantly improved hardness attributed to the increase in metallurgical bonding, relative density and nanocrystalline phases. A large variation in hardness of sintered alloys was attributed to the diffusion controlled crystallization mechanism depending on the nucleation rate during spark plasma sintering, which led to the different degree of microstructural phase evolution in a different part of the sample as confirmed by the scanning probe microscopy revealing the varying depth of indentation. Nanoindentation conducted at lower load resulted in higher hardness attributed to the indentation size effect. The scratch test exhibited decrease in coefficient of friction from 0.40 to 0.30 with the increase in sintering temperature from 300 °C to 500 °C, attributed to decrease in surface roughness.
References
[1] W.H. Wang , C.Dong, C.H.Shek: Mater. Sci. Eng.R 44 (2004) 45. 10.1016/j.mser.2004.03.001Suche in Google Scholar
[2] B.J. Yang , J.H.Yao, J.Zhang, H.W.Yang, J.Q.Wang, E.Ma: Scr. Mater.61 (2009) 423. 10.1016/j.scriptamat.2009.04.035Suche in Google Scholar
[3] X.P. Li , M.Yan, H.Imai, K.Kondoh, J.Q.Wang, G.B.Schaffer, M.Qian: Mater. Sci. Eng.A 568 (2013) 155. 10.1016/j.msea.2013.01.041Suche in Google Scholar
[4] S.S. Deng , D.J.Wanga, Q.Luo, Y.J.Huang, J.Shen: Adv. Powder Technol.26 (2015) 1696. 10.1016/j.apt.2015.10.009Suche in Google Scholar
[5] R.S. Maurya , A.Sahu, T.Laha: Mater. Sci. Eng.A 649 (2016) 48. 10.1016/j.msea.2015.09.109Suche in Google Scholar
[6] R.S. Maurya , A.Sahu, T.Laha: Mater. Des.93 (2016) 96. 10.1016/j.matdes.2015.12.129Suche in Google Scholar
[7] R.S. Maurya , A.Sahu, T.Laha: Adv. Mater. Lett.7 (2016) 187. 10.5185/amlett.2016.6174Suche in Google Scholar
[8] R.S. Maurya , T.Laha: Phil. Mag. Lett.96 (2016) 313. 10.1080/09500839.2016.1215606Suche in Google Scholar
[9] C. Suryanarayana , Mechanical Alloying and Milling, Marcel Dekker Press, New York, 2004. 10.1201/9780203020647Suche in Google Scholar
[10] H.H. Kim , S.H.Cho, C.G.Kang: Mater. Sci. Eng.A 485 (2008) 272. 10.1016/j.msea.2007.07.085Suche in Google Scholar
[11] S. Vincent , B.S.Murty, M.J.Kramer, J.Bhatt: Mater. Des.65 (2015) 98. 10.1016/j.matdes.2014.09.017Suche in Google Scholar
[12] N.K. Mukhopadhyay , A.Belger, P.Paufler, D.H.Kim, Y.J.Huang, J.Shen, Y.L.Chiu, J.J.J.Chen, J.F.Sun: Intermetallics17 (2009) 190. 10.1016/j.intermet.2008.09.014Suche in Google Scholar
[13] J. Bhatt , S.Kumara, C.Dong, B.S.Murty: Mater. Sci. Eng.A 458 (2007) 290. 10.1016/j.msea.2006.12.060Suche in Google Scholar
[14] Y. Wang , L.Shi, D.Duan, S.Li, J.Xu: Mater. Sci. Eng.C 37 (2014) 292. PMid:24582215; 10.1016/j.msec.2014.01.016Suche in Google Scholar PubMed
[15] Y. Huang , Y.L.Chiu, J.Shen, Y.Sun, J.J.J.Chen: Intermetallics18 (2010) 1056. 10.1016/j.intermet.2010.02.002Suche in Google Scholar
[16] T. Gloriant : J. Non-Cryst. Sol.316 (2003) 96. 10.1016/S0022-3093(02)01941-5Suche in Google Scholar
[17] S. Mula , K.Mondal, S.Ghosh, S.K.Pabi: Mater. Sci. Eng.A 527 (2010) 3757. 10.1016/j.msea.2010.03.068Suche in Google Scholar
[18] G. Li , Y.Q.Wang, L.M.Wang, Y.P.Gao, R.J.Zhang, Z.J.Zhan, L.L.Sun, J.Zhang, W.K.Wang: J. Mater. Res.17 (2002) 1877. 10.1557/JMR.2002.0276Suche in Google Scholar
[19] M. Anis , W.M.Rainforth, H.A.Davies: Wear172 (1994) 135. 10.1016/0043-1648(94)90281-XSuche in Google Scholar
[20] P.J. Blau : Wear250 (2001) 431. 10.1016/S0043-1648(01)00627-5Suche in Google Scholar
[21] Koji Kato : Wear241 (2000) 151. 10.1016/S0043-1648(00)00382-3Suche in Google Scholar
[22] J.S. Kim , I.V.Povstugar, P.P.Choi, E.P.Yelsukov, Y.S.Kwon: J. Alloys Compd.486 (2009) 511. 10.1016/j.jallcom.2009.06.193Suche in Google Scholar
[23] L.H. Liu , C.Yang, Y.G.Yao, F.Wang, W.W.Zhang, Y.Long, Y.Y.Li: Intermetallic.66 (2015) 1. 10.1016/j.intermet.2015.06.010Suche in Google Scholar
[24] C. Yang , L.H.Liu, Y.G.Yao, Y.H.Li, Y.Y.Li: J. Alloys Compd.586 (2014) 542. 10.1016/j.jallcom.2013.09.181Suche in Google Scholar
[25] I. Manika , J.Maniks: Acta. Mater.54 (2006) 2049. 10.1016/j.actamat.2005.12.031Suche in Google Scholar
[26] J. Jang , B.G.Yoo, Y.J.Kim, J.H.Oh, I.C.Choi, H.Bei: Scr. Mater.64 (2011) 753. 10.1016/j.scriptamat.2010.12.036Suche in Google Scholar
[27] C.A. Schuh , T.C.Hufnagel, U.Ramamurty: Acta Mater.55 (2007) 4067. 10.1016/j.actamat.2007.01.052Suche in Google Scholar
[28] C. Yang , L.M.Kang, X.X.Li, W.W.Zhang, D.T.Zhang, Z.Q.Fu, Y.Y.Li, L.C.Zhang, E.J.Laverni: Acta Materialia132 (2017) 491. 10.1016/j.actamat.2017.04.062Suche in Google Scholar
[29] F.J. Paneto , J.L.Pereira, J.O.Lima, E.J.Jesus, L.A.Silva, E. SousaLima, R.F.Cabral, C.Santos: Int. J. Refractory Met. Hard Mater.48 (2015) 365. 10.1016/j.ijrmhm.2014.09.010Suche in Google Scholar
[30] M. Chmielewski , S.Nosewicz, E.Wyszkowska, L.Kurpaska, A.Strojny-Nędza, A.Piątkowska, P.Bazarnik, K.Pietrzak: Ceram. Int.45 (2019) 9164. 10.1016/j.ceramint.2019.01.257Suche in Google Scholar
[31] S. Jahanmir , N.P.Suh: Wear44 (1977) 87. 10.1016/0043-1648(77)90087-4Suche in Google Scholar
[32] M. Kalin , S.Jahanmir: Wear255 (2003) 669. 10.1016/S0043-1648(03)00069-3Suche in Google Scholar
[33] P.L. Menezes , Kishore, S.V.Kailas: Wear267 (2009) 1534. 10.1016/j.wear.2009.06.003Suche in Google Scholar
[34] S.F. Tian , L.T.Jiang, Q.Guo, G.H.Wu: Mater. Des.53 (2014) 129. 10.1016/j.matdes.2013.06.038Suche in Google Scholar
[35] M.L. Rahaman , L.Zhang, M.Liu, W.Liu: Wear332–333 (2015) 1231. 10.1016/j.wear.2014.11.030Suche in Google Scholar
[36] A.L. Greer , W.N.Myung: Abrasive wear resistance of bulk metallic glasses, MRS Proc.644 (2000) L10.4.1. 10.1557/PROC-644-L10.4Suche in Google Scholar
[37] B. Prakash , K.Hiratsuka: Tribol. Lett.8 (2000) 153. 10.1023/A:1019191303146Suche in Google Scholar
© 2020, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Solidification processes of as-cast alloys and phase equilibria at 1 300 °C of the Nb–Si–V ternary system
- Compressive properties and energy absorption response of cBN added Al composite foams
- Deformation characteristics of Cu-30 % Zn alloy subjected to dynamic equal channel angular pressing (DECAP)
- Stress-based forming limit diagrams (SFLD) considering strain rate effect and ductile damage phenomenon
- Processing and properties of ultrafine-grained Mg-3Al-1Zn magnesium alloy microtubes fabricated via isothermal hot microforming of SPD processed precursors
- The effect of in-situ formed TiB2 particles on microstructural and mechanical properties of laser melted copper alloy
- Nanoindentation study on Al86Ni8Y6 glassy alloy synthesized via mechanical alloying and spark plasma sintering
- Synthesis of nanosized cadmium ferrite and assaying its magnetic and dielectric properties by analytical and physical techniques
- BN nanosheet modified SnO materials for enhancing photocatalytic properties
- Preparation of salt microparticles via the anti-solvent recrystallization process
- Short Communications
- CVD grown graphene on commercial and electroplated Cu substrates: Raman spectroscopy analysis
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Solidification processes of as-cast alloys and phase equilibria at 1 300 °C of the Nb–Si–V ternary system
- Compressive properties and energy absorption response of cBN added Al composite foams
- Deformation characteristics of Cu-30 % Zn alloy subjected to dynamic equal channel angular pressing (DECAP)
- Stress-based forming limit diagrams (SFLD) considering strain rate effect and ductile damage phenomenon
- Processing and properties of ultrafine-grained Mg-3Al-1Zn magnesium alloy microtubes fabricated via isothermal hot microforming of SPD processed precursors
- The effect of in-situ formed TiB2 particles on microstructural and mechanical properties of laser melted copper alloy
- Nanoindentation study on Al86Ni8Y6 glassy alloy synthesized via mechanical alloying and spark plasma sintering
- Synthesis of nanosized cadmium ferrite and assaying its magnetic and dielectric properties by analytical and physical techniques
- BN nanosheet modified SnO materials for enhancing photocatalytic properties
- Preparation of salt microparticles via the anti-solvent recrystallization process
- Short Communications
- CVD grown graphene on commercial and electroplated Cu substrates: Raman spectroscopy analysis
- DGM News
- DGM News