Synthesis of nanosized cadmium ferrite and assaying its magnetic and dielectric properties by analytical and physical techniques
-
Hemant Kumar Dubey
and Preeti Lahiri
Abstract
Our goal is to investigate the physical, magnetic and dielectric properties of cadmium ferrite nanoparticles. Here we report the synthesis of nanosized cadmium ferrite (CdFe2O4) spinel ferrite by the sol-gel process using citric acid as a complexing agent. We assessed the properties of nano-CdFe2O4 by a variety of analytical and physical techniques. X-ray diffraction and Fourier transform infrared spectroscopy were performed to confirm spinel phase formation. Surface morphology images and compositional features were obtained using electron microscopy and other imaging techniques. Transmission electron microscopy analysis revealed the formation of nanoparticles with an average particle size of 40 nm. The magnetic properties were characterized by a highly sensitive magnetometer system (SQUID VSM) at room temperature revealing that the sintered sample of cadmium ferrite nanoparticles is ferromagnetic. We also studied dielectric behavior of the sintered pellet of the sample. We determined the frequency dependence of the dielectric permittivity, the loss factor and the impedance of the samples in the frequency range from 100 Hz to 20 MHz, at temperatures from 308–428 K at an interval of 40 °C. The dielectric behavior of ferrites is explained by the interface polarization, arising from the heterogeneous nature of its structure. Further research, both in terms of the preparation and characterization of ferrites, is warranted to better understand the nature and application of ferrites.
References
[1] A.M. Abu-Dief , M.S.M.Abdelbaky, D.Martínez-Blanco, Z.Amghouz, S.Garcia-Granda: Mater. Chem. Phys.174 (2016) 164. 10.1016/j.matchemphys.2016.02.065Search in Google Scholar
[2] S. Salman , S.Afghahi, M.Jafarian, Y.Atassi, C.A.Stergiou: Mater. Chem. Phys.186 (2017) 584. 10.1016/j.matchemphys.2016.11.039Search in Google Scholar
[3] Y. Li , J.Jiang, J.Zhao: Mater. Chem. Phys.87 (2004) 91. 10.1016/j.matchemphys.2004.05.007Search in Google Scholar
[4] M. Siddique , N.M.Butt: Physica B: Condens. Matter405 (2010) 4211. 10.1016/j.physb.2010.07.012Search in Google Scholar
[5] C. Pereira , A.M.Pereira, C.Fernandes, M.Rocha, R.Mendes, M.P.Fernandez-Garc, A.Guedes, P.B.Tavares, J.M.Greneche, J.P.Arau, C.Freire: Chem. Mater.24 (2012) 1496. 10.1021/cm300301cSearch in Google Scholar
[6] G. Singh , I.P.S.Kapoor, R.Dubey, P.Srivastava: Thermochimica Acta511 (2010) 112–11118. 10.1016/j.tca.2010.08.001Search in Google Scholar
[7] B.I. Kharisov , H.V.R.Dias, O.V.Kharissova: Arab. J. Chem. (2014) 1878–5352. 10.1016/j.arabjc.2014.10.049.Search in Google Scholar
[8] C. Li , X.Han and F.Cheng: Nat. Commun.6 (2015) 7345. 10.1038/ncomms8345Search in Google Scholar PubMed PubMed Central
[9] M. Mouallem-Bahout , S.Bertrand, O.Peña: J. Solid State Chem.178 (2005) 1080. 10.1016/j.jssc.2005.01.009Search in Google Scholar
[10] A.T. Raghavender , N.Biliškov, Ž.Skoko: Mater. Lett.65 (2011) 677. 10.1016/j.matlet.2010.11.071Search in Google Scholar
[11] G. Vaidyanathan , S.Sendhilnathan: Physica B: Condens. Matter403 (2008) 2157. 10.1016/j.physb.2004.11.138Search in Google Scholar
[12] Z. Wang , Y.Xie, P.Wang, Y.Ma, S.Jin, X.Liu: J. Magn. Magn. Mater.323 (2011) 3121. 10.1016/j.jmmm.2011.06.068Search in Google Scholar
[13] R.D.K. Misra , A.Kale, R.S.Srivastava, O.N.Senkov: J. Mater. Sci. Technol.19 (2003) 826. 10.1179/026708303225003018Search in Google Scholar
[14] S.P. Dalawai , A.B.Gadkari, T.J.Shinde, P.N.Vasambekar: Adv. Mater. Lett.4 (2013) 586. 10.5185/amlett.2012.10431Search in Google Scholar
[15] M. Yokoyama , E.Ohta, T.Sato, T.Sato: J. Magn. Magn. Mater.183 (1998) 173. 10.1063/1.362834.Search in Google Scholar
[16] R. Desai , R.V.Mehta, R.V.Upadhyay, A.Gupta, A.Praneet, K.V.Rao: Bull. Mater. Sci.30 (2007) 197. 10.1007/s12034-007-0035-4Search in Google Scholar
[17] Y. Sharma , N.Sharma, G.V.S.Rao, B.V.R.Chowdary: Bull. Mater.32 (2009) 295. 10.1016/j.jpowsour.2009.02.096Search in Google Scholar
[18] R. Mahesh , A.K.Dhar, T.Sasank, S.Thirunavukkarasu, T.Devadoss: Chin. Chem. Lett.22 (2011) 389. 10.1016/j.cclet.2010.11.002Search in Google Scholar
[19] E.J. Mittemeijer , U.Welzel: Z. Kristallogr.223 (2008) 552–560. 10.1524/zkri.2008.1213Search in Google Scholar
[20] A.K. Zak , W.H.Abd. Majid, M.E.Abrishami, R.Yousefi: Solid State Sci.13 (2011) 251–256. 10.1016/j.solidstatesciences.2010.11.024Search in Google Scholar
[21] B.D. Cullity : Elements of X-ray Diffraction; Addison-Wesley Publishing Company, Inc., Philippines (1978).Search in Google Scholar
[22] I.H. Gul , A.Z.Abbasi, F.Amin, M.A.Rehman, A.Maqsood: J. Magn. Magn. Mater.311 (2007) 49410.1016/j.physc.2006.08.004.Search in Google Scholar
[23] M.S. Niasari , F.Davar, T.Mahmoudi: Polyhedron28 (2009) 1455. 10.1016/j.poly.2009.03.020Search in Google Scholar
[24] R.D. Waldron : Phys. Rev.99 (1955) 1725. 10.1103/PhysRev.99.1727Search in Google Scholar
[25] N.W. Grimes , A.J.Collett: Nature Phys. Sci.2 (1971) 230. 10.1038/physci230158a0Search in Google Scholar
[26] T. Shanmugavel , S.G.Raj, G.R.Kumar, G.Rajarajan, D.Saravanan: J. King Saud Univ. Sci.27 (2015) 176. 10.1016/j.jksus.2014.12.006Search in Google Scholar
[27] S. Sagadevan , K.Pal, Z.Z.Chowdhury, M.E.Hoque: Mater. Res. Express4 (2017) 075025. 10.1088/2053-1591/aa77b5Search in Google Scholar
[28] J. Smith , H.P.J.Wijn: Ferrite, Philips Technical Library, London, (1959).Search in Google Scholar
[29] H. Nathani , S.Gubbala, R.D.K.Misra: Mater. Sci. Eng.B 121 (2005) 126. 10.1016/j.physb.2003.12.017.Search in Google Scholar
[30] Y.K. Jun , S.B.Lee, M.Kim, S.H.Honga, J.W.Kim, K.H.Kim: J. Mater. Res.22 (2007) 3397. 10.1557/JMR.2007.0421Search in Google Scholar
[31] M.C. Dimri , A.Verma, S.C.Kashyap, D.C.Dube, O.P.Thakur, C.Prakash: Mater. Sci. Eng.B 42 (2006) 133. 10.1016/j.mseb.2006.04.043Search in Google Scholar
[32] S.E. Shirsath , B.G.Toksha, K.M.Jadhav: Mater. Chem. Phys.117 (2009) 163. 10.1016/j.matchemphys.2009.05.027Search in Google Scholar
[33] C.G. Koops . Phys. Rev.83 (1951) 121. 10.1103/PhysRev.83.121Search in Google Scholar
[34] J.C. Maxwell : Electricity and Magnetism, Oxford University Press, London, (1973).Search in Google Scholar
[35] K.M. Batoo , S.Kumar, C.G.Lee, Alimuddin: Curr. Appl. Phys.9 (2009) 826–832. 10.1016/j.cap.2008.08.001Search in Google Scholar
© 2020, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Solidification processes of as-cast alloys and phase equilibria at 1 300 °C of the Nb–Si–V ternary system
- Compressive properties and energy absorption response of cBN added Al composite foams
- Deformation characteristics of Cu-30 % Zn alloy subjected to dynamic equal channel angular pressing (DECAP)
- Stress-based forming limit diagrams (SFLD) considering strain rate effect and ductile damage phenomenon
- Processing and properties of ultrafine-grained Mg-3Al-1Zn magnesium alloy microtubes fabricated via isothermal hot microforming of SPD processed precursors
- The effect of in-situ formed TiB2 particles on microstructural and mechanical properties of laser melted copper alloy
- Nanoindentation study on Al86Ni8Y6 glassy alloy synthesized via mechanical alloying and spark plasma sintering
- Synthesis of nanosized cadmium ferrite and assaying its magnetic and dielectric properties by analytical and physical techniques
- BN nanosheet modified SnO materials for enhancing photocatalytic properties
- Preparation of salt microparticles via the anti-solvent recrystallization process
- Short Communications
- CVD grown graphene on commercial and electroplated Cu substrates: Raman spectroscopy analysis
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Solidification processes of as-cast alloys and phase equilibria at 1 300 °C of the Nb–Si–V ternary system
- Compressive properties and energy absorption response of cBN added Al composite foams
- Deformation characteristics of Cu-30 % Zn alloy subjected to dynamic equal channel angular pressing (DECAP)
- Stress-based forming limit diagrams (SFLD) considering strain rate effect and ductile damage phenomenon
- Processing and properties of ultrafine-grained Mg-3Al-1Zn magnesium alloy microtubes fabricated via isothermal hot microforming of SPD processed precursors
- The effect of in-situ formed TiB2 particles on microstructural and mechanical properties of laser melted copper alloy
- Nanoindentation study on Al86Ni8Y6 glassy alloy synthesized via mechanical alloying and spark plasma sintering
- Synthesis of nanosized cadmium ferrite and assaying its magnetic and dielectric properties by analytical and physical techniques
- BN nanosheet modified SnO materials for enhancing photocatalytic properties
- Preparation of salt microparticles via the anti-solvent recrystallization process
- Short Communications
- CVD grown graphene on commercial and electroplated Cu substrates: Raman spectroscopy analysis
- DGM News
- DGM News