Deformation characteristics of Cu-30 % Zn alloy subjected to dynamic equal channel angular pressing (DECAP)
-
Mingya Zhang
, Li Liu , Zhenyi Huang and Jinghui Li
Abstract
In this study, the applicability of dynamic equal channel angular pressing for grain refinement and improvement in the properties of a two-phase Cu-30 %Zn alloy was investigated. Simulation and experiments were performed to study the deformation characteristics. The parameters for the multi-pass extrusion simulation were consistent with those in the experiments. The experimental results are in good agreement with the simulation. A homogeneous microstructure and grain refinement are readily achieved. The hardness increases rapidly by 170 % compared to the annealed samples, and its distribution is approximately uniform throughout the 2-pass deformation. Microstructural analysis indicates nanotwins of ~5–10 nm width and high-density dislocations.
References
[1] R.Z. Valiev , in S.H.Whang (Ed.): Producing bulk nanostructured metals and alloys by severe plastic deformation, Nanostructured Metals and Alloys, Woodhead Publishing Limited, Cambridge, UK (2011), Ch. 1, pp. 3–39. 10.1533/9780857091123.1.3Search in Google Scholar
[2] B. Roy , R.Kumar, J.Das: Mater. Sci. Eng.A 631 (2015) 241. 10.1016/j.msea.2015.02.050Search in Google Scholar
[3] Y. Iwahashi , Z.Horita, M.Nemoto, T.G.Langdon: Acta Mater.46 (1998) 3317. 10.1016/S1359-6454(97)00494-1Search in Google Scholar
[4] R.Z. Valiev , R.K.Islamgaliev, I.V.Alexandrov: Prog. Mater Sci.45 (2000) 103. 10.1016/S0079-6425(99)00007-9Search in Google Scholar
[5] J.H. Li , F.G.Li, X.K.Ma, J.Li, S.Liang: Mater. Sci. Eng.A 732 (2018) 53. 10.1016/j.msea.2018.06.097Search in Google Scholar
[6] A.P. Zhilyaev , G.V.Nurislamova, B.K.Kim, M.D.Baró, J.A.Szpunar, T.G.Langdon: Acta Mater.51 (2003) 753. 10.1016/S1359-6454(02)00466-4Search in Google Scholar
[7] X. Cheng , Z.Horita, T.G.Langdon: Acta Mater.55 (2007) 203. 10.1016/j.actamat.2006.07.029Search in Google Scholar
[8] B.B. Straumal , V.Pontikis, A.R.Kilmametov, A.A.Mazilkin, S.V.Dobatkin, B.Baretzky: Acta Mater.122 (2017) 60. 10.1016/j.actamat.2016.09.024Search in Google Scholar
[9] Y. Saito , H.Utsunomiya, N.Tsuji, T.Sakai: Acta Mater.47 (1999) 579. 10.1016/S1359-6454(98)00365-6Search in Google Scholar
[10] J.H. Li , F.G.Li, X.K.Ma, H.Chen, Z.C.Ma, J.Li: J. Mater. Eng. Perform.24 (2015) 4543. 10.1007/s11665-015-1731-7Search in Google Scholar
[11] Z.J. Zhang , Q.Q.Duan, X.H.An, S.D.Wu, G.Yang, Z.F.Zhang: Mater. Sci. Eng.A 528 (2011) 4259. 10.1016/j.msea.2010.12.080Search in Google Scholar
[12] D.R. Fang , F.F.Liu, C.Liu: Adv. Mater. Res.706–708 (2013) 78. 10.4028/www.scientific.net/AMR.706-708.78Search in Google Scholar
[13] S. Qu , X.H.An, H.J.Yang, C.X.Huang, G.Yang, Q.S.Zang, Z.G.Wang, S.D.Wu, Z.F.Zhang: Acta Mater.57 (2009) 1586. 10.1016/j.actamat.2008.12.002Search in Google Scholar
[14] D. Orlov , A.Vinogradov: Mater. Sci. Eng.A 530 (2011) 174. 10.1016/j.msea.2011.09.069Search in Google Scholar
[15] P. Zhang , S.Qu, M.X.Yang, G.Yang, S.D.Wu, S.X.Li, Z.F.Zhang: Mater. Sci. Eng., A 594 (2014) 309. 10.1016/j.msea.2013.11.079Search in Google Scholar
[16] Y. Zhang , Y.S.Li, N.R.Tao, K.Lu: Appl. Phys. Lett.91 (2007) 211901. 10.1063/1.2816126Search in Google Scholar
[17] V. Krasnoveikin , S.Vladimir, A.Kozulin, O.Senatova: Adv. Mater. Res.1040 (2014) 107. 10.4028/www.scientific.net/AMR.1040.107Search in Google Scholar
[18] R.Z. Valiev , T.G.Langdon: Prog. Mater Sci.51 (2006) 881. 10.1016/j.pmatsci.2006.02.003Search in Google Scholar
[19] J. Takahashi , H.Suito: Metall. Mater. Trans.A 34 (2003) 171. 10.1007/s11661-003-0218-6Search in Google Scholar
[20] J.C. Tucker , L.H.Chan, G.S.Rohrer, M.A.Groeber, A.D.Rollett: Scr. Mater.66 (2012) 554. 10.1016/j.scriptamat.2012.01.001Search in Google Scholar
[21] J.A. Del Valle , O.A.Ruano: Acta Mater.55 (2007) 455. 10.1016/j.actamat.2006.08.039Search in Google Scholar
[22] S. Suryadi , R.A.M.Napitupulu, D.Priadi, A.Suhadi, E.S.Siradj: Adv. Mater. Res., 789 (2013) 373. 10.4028/www.scientific.net/AMR.0.373Search in Google Scholar
[23] W.Z. Han , Z.F.Zhang, S.D.Wu, S.X.Li: Philos. Mag.88 (2008) 3011. 10.1080/14786430802438168Search in Google Scholar
[24] P. Zhang , X.H.An, Z.J.Zhang, S.D.Wu, S.X.Li, Z.F.Zhang, R.B.Figueiredo, N.Gao, T.G.Langdon: Scr. Mater.67 (2012) 871. 10.1016/j.scriptamat.2012.07.040Search in Google Scholar
[25] X.X. Wu , X.Y.San, Y.L.Gong, L.P.Chen, C.J.Li, X.K.Zhu: Mater. Des.47 (2013) 295. 10.1016/j.matdes.2012.12.020Search in Google Scholar
[26] B. Roy , J.Das: Sci. Rep.7 (2017) 17512–1. 10.1038/s41598-017-17848-3Search in Google Scholar PubMed PubMed Central
[27] S. Mu , T.Al-Samman, V.Mohles, G.Gottstein: Acta Mater.59 (2011) 6938. 10.1016/j.actamat.2011.07.045. 10.1016/j.actamat.2011.07.045Search in Google Scholar
[28] W.S. Choi , B.C.D.Cooman, S.Sandlöbes, D.Raabe: Acta Mater.98 (2015) 391. 10.1016/j.actamat.2015.06.065Search in Google Scholar
[29] S. Kang , J.G.Jung, M.Kang, W.Woo, Y.K.Lee: Mater. Sci. Eng.A 652 (2016) 212. 10.1016/j.msea.2015.11.096Search in Google Scholar
[30] B. Roy , T.Maity, J.Das: Mater. Sci. Eng.A 672 (2016) 203. 10.1016/j.msea.2016.07.016Search in Google Scholar
[31] N.K. Kumar , B.Roy, J.Das: J. Alloys Compd.618 (2015) 139. 10.1016/j.jallcom.2014.08.131Search in Google Scholar
[32] T. Konkova , S.Mironov, A.Korznikov, G.Korznikova, M.M.Myshlyaev, S.L.Semiatin: J. Alloys Compd.629 (2015) 140. 10.1016/j.jallcom.2014.12.241Search in Google Scholar
© 2020, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Solidification processes of as-cast alloys and phase equilibria at 1 300 °C of the Nb–Si–V ternary system
- Compressive properties and energy absorption response of cBN added Al composite foams
- Deformation characteristics of Cu-30 % Zn alloy subjected to dynamic equal channel angular pressing (DECAP)
- Stress-based forming limit diagrams (SFLD) considering strain rate effect and ductile damage phenomenon
- Processing and properties of ultrafine-grained Mg-3Al-1Zn magnesium alloy microtubes fabricated via isothermal hot microforming of SPD processed precursors
- The effect of in-situ formed TiB2 particles on microstructural and mechanical properties of laser melted copper alloy
- Nanoindentation study on Al86Ni8Y6 glassy alloy synthesized via mechanical alloying and spark plasma sintering
- Synthesis of nanosized cadmium ferrite and assaying its magnetic and dielectric properties by analytical and physical techniques
- BN nanosheet modified SnO materials for enhancing photocatalytic properties
- Preparation of salt microparticles via the anti-solvent recrystallization process
- Short Communications
- CVD grown graphene on commercial and electroplated Cu substrates: Raman spectroscopy analysis
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Solidification processes of as-cast alloys and phase equilibria at 1 300 °C of the Nb–Si–V ternary system
- Compressive properties and energy absorption response of cBN added Al composite foams
- Deformation characteristics of Cu-30 % Zn alloy subjected to dynamic equal channel angular pressing (DECAP)
- Stress-based forming limit diagrams (SFLD) considering strain rate effect and ductile damage phenomenon
- Processing and properties of ultrafine-grained Mg-3Al-1Zn magnesium alloy microtubes fabricated via isothermal hot microforming of SPD processed precursors
- The effect of in-situ formed TiB2 particles on microstructural and mechanical properties of laser melted copper alloy
- Nanoindentation study on Al86Ni8Y6 glassy alloy synthesized via mechanical alloying and spark plasma sintering
- Synthesis of nanosized cadmium ferrite and assaying its magnetic and dielectric properties by analytical and physical techniques
- BN nanosheet modified SnO materials for enhancing photocatalytic properties
- Preparation of salt microparticles via the anti-solvent recrystallization process
- Short Communications
- CVD grown graphene on commercial and electroplated Cu substrates: Raman spectroscopy analysis
- DGM News
- DGM News