Compressive properties and energy absorption response of cBN added Al composite foams
-
Bilge Yaman Islak
Abstract
In this study, pure Al foam and 2, 5, 10 wt.% cubic boron nitride Al composite foams were manufactured to reveal the effects of cubic boron nitride addition on the properties of Al foam materials. Cellular morphology investigations and quasi-static compression test results were correlated with the effect of foaming agent behavior, compacting pressure, amount of ceramic addition, and compressive properties. The cubic boron nitride reinforced Al foams exhibited superior compressive properties and energy absorption behavior. The compressive properties were enhanced by increasing the cubic boron nitride content and compacting pressure. The maximum mechanical properties were achieved in 10 wt.% cubic boron nitride aluminum composite foams. The results revealed that these composite foams are possibly a candidate for specific high technology applications with high mechanical properties.
References
[1] A. Hassani , A.Habibolahzadeh, H.Bafti: Mater. Des.40 (2012) 510. 10.1016/j.matdes.2012.04.024Search in Google Scholar
[2] S.M. Hosseini , A.Habibolahzadeh, V.Králík, V.Petráňová, J.Němeček: Mater. Sci. Eng.A 680 (2017) 157. 10.1016/j.msea.2016.10.091Search in Google Scholar
[3] N. Mahmutyazicioglu , O.Albayrak, M.Ipekoglu: J. Mater. Res.28 (2013) 2509. 10.1557/jmr.2013.187Search in Google Scholar
[4] A. Li , H.Xu, L.Geng, B.Li, Z.Tan, W.Ren: Trans. Non-ferrous Met. Soc. China22 (2012) 33. 10.1016/S1003-6326(12)61680-XSearch in Google Scholar
[5] S. Yu , Y.Luo, J.Liu: Mater. Sci. Eng.A 487 (2008) 394. 10.1016/j.msea.2007.11.025Search in Google Scholar
[6] O. Prakash , H.Sang, J.D.Embury: Mater. Sci. Eng.A 199 (1995) 195. 10.1016/0921-5093(94)09708-9Search in Google Scholar
[7] M. Alizadeh , M.Mirzaei-Aliabadi: Mater. Des.35 (2012) 419. 10.1016/j.matdes.2011.09.059Search in Google Scholar
[8] A. Daoud : J Alloys Compd.486 (2009) 597. 10.1016/j.jallcom.2009.07.013Search in Google Scholar
[9] Y.C. Li , J.Y.Xiong, J.G.Lin, M.Forrest, P.D.Hodgson, C.E.Wen: Mater. Sci. Forum31 (2007) 52.Search in Google Scholar
[10] L. Vel , G.Demazeau, J.Etourneau: Mater. Sci. Eng.B 10 (1991) 149. 10.1016/0921-5107(91)90121-BSearch in Google Scholar
[11] S. Elbir , S.Yilmaz, A.K.Toksoy, M.Guden, I.W.Hall: J. Mater. Sci.38 (2003) 4745. 10.1023/A:1027427102837Search in Google Scholar
[12] H. Bafti , A.Habibolahzadeh: Mater. Des.31 (2010) 4122. 10.1016/j.matdes.2010.04.038Search in Google Scholar
[13] S.S. Vidyawathi , R.Amaresh, L.N.Satapathy: Bull. Mater. Sci.25 (2002) 569. 10.1007/BF02710553Search in Google Scholar
[14] I.D. Giovannelli Maizoa , A.P.Luza, C.Pagliosab, V.C.Pandolfelli: Ceram. Int.43 (2017) 10207. 10.1016/j.ceramint.2017.05.047Search in Google Scholar
[15] E. Gunay : Turkish J. Eng. Env. Sci.35 (2011) 83. 10.3906/muh-1008-14Search in Google Scholar
[16] ASTM E9–89a(2000), Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature (Withdrawn 2009), ASTM International, West Conshohocken, PA (2000) 200.Search in Google Scholar
[17] W. Deqing , S.Ziyuan: Mater. Sci. Eng.A 361 (2003) 45. 10.1016/S0921-5093(03)00557-4Search in Google Scholar
[18] M. Malekjafarian , S.K.Sadrnezhaad: Mater. Des.42 (2012) 8. 10.1016/j.matdes.2012.05.036Search in Google Scholar
[19] H.I. Bakan , D.Heaney, R.M.German: Powder Metall.44 (2001) 235. 10.1179/003258901666392Search in Google Scholar
[20] H.I. Bakan : Scripta Mater.55 (2006) 203. 10.1016/j.scriptamat.2006.03.039Search in Google Scholar
[21] J. Qi , W.Chen, H.Wang, Y.Wang, L.Li, H.L.W.Chan: Sensor Actuat A-PHYS116 (2004) 215. 10.1016/S0924-4247(04)00267-5Search in Google Scholar
[22] J. Cao , C.Li: Int. J. Appl. Ceram. Technol.12 (3) (2015) 652. 10.1111/ijac.12185Search in Google Scholar
[23] D.P. Mondal , M.D.Goel, S.Das: Mater. Sci. Eng.A 507 (2009) 102. 10.1016/j.msea.2009.01.019Search in Google Scholar
[24] B. Soni , S.Biswas: Mater. Today2 (2015) 1886–1891. 10.1016/j.matpr.2015.07.140Search in Google Scholar
[25] Y.J. Yang , F.S.Han, D.K.Yang, K.Zheng, Mater. Sci. Technol.23 (2007) 502–504. 10.1179/174328407X161114Search in Google Scholar
[26] L.J. Gibson , M.F.Ashby, Cellular Solids, Structure and Properties, 2nd ed., Cambridge University Press, ISBN: 9780521495608 (1997) 510. 10.1017/CBO9781139878326Search in Google Scholar
[27] A.K. Kaw , Mechanics of Composite Materials, 2nd ed., CRC Press, Boca Raton ISBN: 9780849313431 (1997) 352.Search in Google Scholar
[28] D.P. Papadopoulos , I.C.Konstantinidis, N.Papanastasiou, S.Skolianos, H.Lefakis, D.N.Tsipas: Mater. Lett.58 (2004) 2574. 10.1016/j.matlet.2004.03.004Search in Google Scholar
[29] J.R. Davis , ASM Specialty Handbook: Tool Materials, ASM International Handbook Committee ISBN: 978-0-87170-545-7 (1995) 501.Search in Google Scholar
© 2020, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Solidification processes of as-cast alloys and phase equilibria at 1 300 °C of the Nb–Si–V ternary system
- Compressive properties and energy absorption response of cBN added Al composite foams
- Deformation characteristics of Cu-30 % Zn alloy subjected to dynamic equal channel angular pressing (DECAP)
- Stress-based forming limit diagrams (SFLD) considering strain rate effect and ductile damage phenomenon
- Processing and properties of ultrafine-grained Mg-3Al-1Zn magnesium alloy microtubes fabricated via isothermal hot microforming of SPD processed precursors
- The effect of in-situ formed TiB2 particles on microstructural and mechanical properties of laser melted copper alloy
- Nanoindentation study on Al86Ni8Y6 glassy alloy synthesized via mechanical alloying and spark plasma sintering
- Synthesis of nanosized cadmium ferrite and assaying its magnetic and dielectric properties by analytical and physical techniques
- BN nanosheet modified SnO materials for enhancing photocatalytic properties
- Preparation of salt microparticles via the anti-solvent recrystallization process
- Short Communications
- CVD grown graphene on commercial and electroplated Cu substrates: Raman spectroscopy analysis
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Solidification processes of as-cast alloys and phase equilibria at 1 300 °C of the Nb–Si–V ternary system
- Compressive properties and energy absorption response of cBN added Al composite foams
- Deformation characteristics of Cu-30 % Zn alloy subjected to dynamic equal channel angular pressing (DECAP)
- Stress-based forming limit diagrams (SFLD) considering strain rate effect and ductile damage phenomenon
- Processing and properties of ultrafine-grained Mg-3Al-1Zn magnesium alloy microtubes fabricated via isothermal hot microforming of SPD processed precursors
- The effect of in-situ formed TiB2 particles on microstructural and mechanical properties of laser melted copper alloy
- Nanoindentation study on Al86Ni8Y6 glassy alloy synthesized via mechanical alloying and spark plasma sintering
- Synthesis of nanosized cadmium ferrite and assaying its magnetic and dielectric properties by analytical and physical techniques
- BN nanosheet modified SnO materials for enhancing photocatalytic properties
- Preparation of salt microparticles via the anti-solvent recrystallization process
- Short Communications
- CVD grown graphene on commercial and electroplated Cu substrates: Raman spectroscopy analysis
- DGM News
- DGM News