Processing and properties of ultrafine-grained Mg-3Al-1Zn magnesium alloy microtubes fabricated via isothermal hot microforming of SPD processed precursors
-
Tohid Khandani
, Ghader Faraji and Hamid Reza Torabi
Abstract
In the present paper, a new method for producing ultrafine grained microtubes of AZ31 magnesium alloy is proposed. The method consists of performing isothermal hot micro-backward extrusion on severe plastic deformation processed samples. One-pass equal channel angular pressing (ECAP) and cyclic extrusion compression angular pressing forward extrusion (CECAP-FE) were performed on an as-cast coarse-grained Mg-3Al-1Zn magnesium alloy before microtube fabrication. Microstructure and microhardness of the samples before and after micro-backward extrusion and deformation force during the fabrication process were studied. As a result, it was revealed that the proposed method performed on CECAP-FEed precursors could effectively produce ultrafine grained AZ31 magnesium alloy microtubes with excellent microhardness, good uniformity in shape, microstructure, and microhardness.
References
[1] M.W. Fu , W.L.Chan, Micro-scaled Products Development via Microforming, Springer-Verlag, London (2014).Search in Google Scholar
[2] D.L. Yin , K.F.Zhang, G.F.Wang, W.B.Han: Mater. Sci. Eng.A 392 (2005) 320. 10.1016/j.msea.2004.09.039Search in Google Scholar
[3] G. Wu , J.M.Ibrahim, P.K.Chu: Surf. Coat. Technol.233 (2013) 2. 10.1016/j.surfcoat.2012.10.009Search in Google Scholar
[4] W. Kim , Y.Sa: Scr. Mater.54 (2006) 1391. 10.1016/j.scriptamat.2005.11.066Search in Google Scholar
[5] W.J. Kim , S.J.Yoo, H.K.Kim: Scr. Mater.59 (2008) 599. 10.1016/j.scriptamat.2008.05.014Search in Google Scholar
[6] M. Arentoft , S.Bruschi, A.Ghiotti, N.A.Paldan, J.V.Holstein: Int. J. Mater. Form.1 (2008) 185. 10.1007/s12289-008-0Search in Google Scholar
[7] J.H. Lee , S.H.Kang, D.Y.Yang: CIRP Annals – Manufacturing Technology57 (2008) 261. 10.1016/j.cirp.2008.03.064Search in Google Scholar
[8] T. Matsuda : Journal of the JSTP54 (2013) 831. 10.9773/sosei.54.831Search in Google Scholar
[9] J. Xu , M.Shirooyeh, J.Wongsa-Ngam, D.Shan, B.Guo, T.G.Langdon: Mater. Sci. Eng.A 586 (2013) 108. 10.1016/j.msea.2013.07.096Search in Google Scholar
[10] J. Xu , B.Guo, D.B.Shan, T.G.Langdon: Mater. Sci. Forum783–786 (2014) 2726. 10.4028/www.scientific.net/MSF.783-786.2726Search in Google Scholar
[11] J. Holtkamp : J MICROMECH MICROENG (2015) 347. 10.1016/B978-0-323-31149-6.00015-3Search in Google Scholar
[12] J. Xu , G.Xing, D.Shan, B.Guo, T.G.Langdon: MATECWeb of Conferences21 (2015). 10.1051/matecconf/20152109005Search in Google Scholar
[13] J. Xu , X.Wang, M.Shirooyeh, G.Xing, D.Shan, B.Guo, T.G.Langdon: J. Mater. Sci.50 (2015) 7424. 10.1007/s10853-015-9300-xSearch in Google Scholar
[14] X. Wang , J.Xu, Z.Jiang, W.-L.Zhu, D.Shan, B.Guo, J.Cao: Mater. Sci. Eng.A 659 (2016) 215. 10.1016/j.msea.2016.02.064Search in Google Scholar
[15] W.J. Kim , S.J.Yoo, H.K.Kim: Scr. Mater.59 (2008) 599. 10.1016/j.scriptamat.2008.05.014Search in Google Scholar
[16] G. Faraji , H.S.Kim, H.T.Kashi: Severe Plastic Deformation: Methods, Processing and Properties: Elsevier (2018) ISBN: 978012813518110.1016/B978-0-12-813518-1.00003-5Search in Google Scholar
[17] G.E. Dieter , H.A.Kuhn, S.L.Semiatin, ASM International, (2003).Search in Google Scholar
[18] D.L. Yin , J.Tao, J.Qiang, X.Zhao: J. Alloys Compd.478 (2009) 789. 10.1016/j.jallcom.2008.12.033Search in Google Scholar
[19] J.T. Wang , D.L.Yin, J.Q.Liu, J.Tao, Y.L.Su, X.Zhao: Scr. Mater.59 (2008) 63. 10.1016/j.scriptamat.2008.02.029Search in Google Scholar
[20] S. Amani , G.Faraji, H.K.Mehrabadi, K.Abrinia, H.Ghanbari: J. Alloys Compd.723 (2017) 467. 10.1016/j.jallcom.2017.06.201Search in Google Scholar
[21] D. Chakrabarti , C.Davis, M.Strangwood: Mater. Charact.58 (2007) 423. 10.1016/j.matchar.2006.06.014Search in Google Scholar
[22] D. Chakrabarti , C.L.Davis, M.Strangwood: Mater. Sci. Forum501 (2005) 613. 10.4028/www.scientific.net/MSF.500-501.613Search in Google Scholar
[23] A. Fata , G.Faraji, M.M.Mashhadi, V.Tavakkoli: Mater. Sci. Eng.A 674 (2016) 9. 10.1016/j.msea.2016.07.117Search in Google Scholar
[24] S. Amani , G.Faraji, K.Abrinia: J. Manuf. Processes28 (2017) 197. 10.1016/j.jmapro.2017.06.007Search in Google Scholar
[25] R.B. Figueiredo , T.G.Langdon: J. Mater. Sci.45 (2010) 4827. 10.1007/s10853-010-4589-ySearch in Google Scholar
[26] R.B. Figueiredo , T.G.Langdon: J. Mater. Sci. (2008) 43 (2008) 7366. 10.1007/s10853-008-2846-0Search in Google Scholar
[27] A.G. Beer , M.R.Barnett: Mater. Sci. Eng.A 423 (2006) 292. 10.1016/j.msea.2006.02.041Search in Google Scholar
[28] K. Yoshida : Int. J. Mech. Sci.83 (2014) 48. 10.1016/j.ijmecsci.2014.03.018Search in Google Scholar
[29] L. Zhang , W.Xu, C.Liu, X.Ma, J.Long: Comput. Mater. Sci.132 (2017) 19. 10.1016/j.commatsci.2017.02.018Search in Google Scholar
[30] S.H. Kang , Y.S.Lee, J.H.Lee: J. Mater. Process. Technol.201 (2008) 436. 10.1016/j.jmatprotec.2007.11.305Search in Google Scholar
[31] J. Xu , J.Li, D.Shan, B.Guo: AIP Advances5 (2015) 097147. 10.1063/1.4931382Search in Google Scholar
[32] M. Eftekhari , A.Fata, G.Faraji, M.M.Mashhadi: J. Alloys Compd.742 (2018) 442. 10.1016/j.jallcom.2018.01.246Search in Google Scholar
[33] J.H. Schneibel , M.Heilmaier: Mater. Trans.55 (2014) 44. 10.2320/matertrans.MA201309Search in Google Scholar
[34] A. Fata , M.Eftekhari, G.Faraji, M.M.Mashhadi: J. Mater. Eng. Perform.27 (2018) 2330. 10.1007/s11665-018-3350-6Search in Google Scholar
© 2020, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Solidification processes of as-cast alloys and phase equilibria at 1 300 °C of the Nb–Si–V ternary system
- Compressive properties and energy absorption response of cBN added Al composite foams
- Deformation characteristics of Cu-30 % Zn alloy subjected to dynamic equal channel angular pressing (DECAP)
- Stress-based forming limit diagrams (SFLD) considering strain rate effect and ductile damage phenomenon
- Processing and properties of ultrafine-grained Mg-3Al-1Zn magnesium alloy microtubes fabricated via isothermal hot microforming of SPD processed precursors
- The effect of in-situ formed TiB2 particles on microstructural and mechanical properties of laser melted copper alloy
- Nanoindentation study on Al86Ni8Y6 glassy alloy synthesized via mechanical alloying and spark plasma sintering
- Synthesis of nanosized cadmium ferrite and assaying its magnetic and dielectric properties by analytical and physical techniques
- BN nanosheet modified SnO materials for enhancing photocatalytic properties
- Preparation of salt microparticles via the anti-solvent recrystallization process
- Short Communications
- CVD grown graphene on commercial and electroplated Cu substrates: Raman spectroscopy analysis
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Solidification processes of as-cast alloys and phase equilibria at 1 300 °C of the Nb–Si–V ternary system
- Compressive properties and energy absorption response of cBN added Al composite foams
- Deformation characteristics of Cu-30 % Zn alloy subjected to dynamic equal channel angular pressing (DECAP)
- Stress-based forming limit diagrams (SFLD) considering strain rate effect and ductile damage phenomenon
- Processing and properties of ultrafine-grained Mg-3Al-1Zn magnesium alloy microtubes fabricated via isothermal hot microforming of SPD processed precursors
- The effect of in-situ formed TiB2 particles on microstructural and mechanical properties of laser melted copper alloy
- Nanoindentation study on Al86Ni8Y6 glassy alloy synthesized via mechanical alloying and spark plasma sintering
- Synthesis of nanosized cadmium ferrite and assaying its magnetic and dielectric properties by analytical and physical techniques
- BN nanosheet modified SnO materials for enhancing photocatalytic properties
- Preparation of salt microparticles via the anti-solvent recrystallization process
- Short Communications
- CVD grown graphene on commercial and electroplated Cu substrates: Raman spectroscopy analysis
- DGM News
- DGM News