Preparation of salt microparticles via the anti-solvent recrystallization process
-
Wei Huang
, Shuai Pan , Yanghua Liu , Qingmei Yu and Ruijiang Liu
Abstract
The anti-solvent recrystallization process for the preparation of salt microparticles is introduced. The micron size of salt particles was confirmed by scanning electron microscopy. The preparation conditions such as the antisolvent types, dripping acceleration, stirring time, the volume ratio of antisolvent and solvent, and adding sequence of solvent were optimized. The experimental results indicated that these preparation conditions were as follows: The saturated salt solution was added into absolute alcohol at a dripping acceleration of 10 mL · min−1, a stirring time duration of 30 min, and an antisolvent and solvent volume ratio of 4 : 1. Salt microparticles with an average diameter of about 6.3 μm, uniform size distribution and better crystallization were obtained under the above optimization conditions.
References
[1] P.J. Landrigan , R.Fuller, S.Fisher, W.A.Suk, P.Sly, T.C.Chiles, S.Bose-O'Reilly: Sci. Total Environ.650 (2019) 2389. PMid:30292994; 10.1016/j.scitotenv.2018.09.375Search in Google Scholar PubMed
[2] J. Idavain , K.Julge, T.Rebane, A.Lang, H.Orru: Sci. Total Environ.650 (2019) 65. PMid:30195132; 10.1016/j.scitotenv.2018.08.391Search in Google Scholar PubMed
[3] R.H. Alrashoudi , I.J.Crane, H.M.Wilson, M.Al-Alwan, N.M.Alajez: Bioscience Rep.38 (2018) 1. PMid:30038057; 10.1042/BSR20180548Search in Google Scholar PubMed PubMed Central
[4] W.J. Chen , J.M.Fitzgerald, L.D.Lynd, D.D.Sin, M.Sadatsafavi: J. Aller. Cl. Imm-Pract.6 (2018) 20. 10.1016/j.jaip.2018.04.027Search in Google Scholar PubMed
[5] B.J. Kirenga , C.D.Jong, L.Mugenyi, W.Katagira, A.Muhofa, M.R.Kamya, H.M.Boezen, T.van der Molen: Thorax73 (2018) 983. PMid:29752346; 10.1136/thoraxjnl-2018-211718Search in Google Scholar PubMed
[6] R. Beasley , N.Pearce, J.Crane, C.Burgess: J. Allergy Clin. Immun.104 (1999) 18. 10.1016/s0091-6749(99)Search in Google Scholar
[7] S. Ebmeier , D.Thayabaran, I.Braithwaite, C.Bénamara, M.Weatherall, R.Beasley: Lancet390 (2017) 935. 10.1016/S0140-6736(17)31448-4Search in Google Scholar PubMed
[8] C.F. Rider , C.Carlsten: Pharmacol. Therapeut.194 (2019) 1. PMid:30138638; 10.1016/j.pharmthera.2018.08.005Search in Google Scholar PubMed
[9] M.M. Mostafa , C.F.Rider, S.Shah, S.L.Traves, P.M.K.Gordon, A.Miller-Larsson, R.Leigh, R.Newton: BMC. Med. Genomics12 (2019) 1. PMid:30704470; 10.1186/s12920-018-0467-2Search in Google Scholar PubMed PubMed Central
[10] E. Laszlo : Orvosi Hetilap156 (2015) 1643. PMid:26551167; 10.1556/650.2015.30267Search in Google Scholar PubMed
[11] N. Luminita , C.G.Cirstoveanu, A.I.Istrate-Barzan, B.Il-Eana, S.Manolache, M.Bizubac, A.Gaiduchevici: Signa Vitae13 (2017) 85. 10.22514/SV132.112017.13Search in Google Scholar
[12] P.G. Durham , Y.Zhang, N.German, N.Mortensen, J.Dhillon, D.A.Mitchison, P.B.Fourie, A.J.Hickey: Mol. Pharm.12 (2015) 2574. PMid:26098136; 10.1021/acs.molpharmaceut.5b00118Search in Google Scholar PubMed
[13] L.D. Castillo-Peinado , M.D.L.de Castro: J. Pharm. Pharmacol.68 (2016) 1249. PMid:27464836; 10.1111/jphp.12614Search in Google Scholar PubMed
[14] R. Rashleigh , S.M.S.Smith, N.J.Roberts: Int. J. Chronic Obstr.9 (2014) 239. 10.2147/COPD.S57511Search in Google Scholar PubMed PubMed Central
[15] E. Laszlo : Orvosi Hetilap157 (2016) 1019. PMid:27319382; 10.1556/650.2016.30449Search in Google Scholar PubMed
[16] Y. Wada , M.Matsumoto, K.Onoe: J. Cryst. Growth373 (2013) 92. 10.1016/j.jcrysgro.2012.11.061Search in Google Scholar
[17] D. Gao , M.Jia: Appl. Surf. Sci.35 (2015) 89. 10.1016/j.apsusc.2015.09.235Search in Google Scholar
[18] L.L. Liu , F.Gao, Y.M.Zhang: J. Mater. Sci-Mater. El.26 (2015) 1136. 10.1007/s10854-014-2517-7Search in Google Scholar
[19] T.G. Zijlema , R.M.Geertman, G.J.Witkamp, G.M.van Rosmalen, J.de Graauw: Ind. Eng. Chem. Res.39 (2000) 1330. 10.1021/ie990221hSearch in Google Scholar
[20] Y. Wada , M.Matsumoto, K.Onoe: J. Cryst. Growth448 (2016) 76. 10.1016/j.jcrysgro.2016.03.043Search in Google Scholar
[21] S. Sawamura , N.Egoshi, Y.Setoguchi, H.Matsuo: Fluid Phase Equilibr.254 (2007) 158. 10.1016/j.fluid.2007.03.003Search in Google Scholar
[22] M. Barrett , D.O'Grady, E.Casey, B.Glennon: Chem. Eng. Sci.66 (2011) 2523. 10.1016/j.ces.2011.02.042Search in Google Scholar
[23] L. Padrela , J.Zeglinski, K.M.Ryan: Cryst. Growth Des.17 (2017) 4544. 10.1021/acs.cgd.7b00163Search in Google Scholar
[24] J. Lee , M.Ashokkumar, S.E.Kentish: Ultrason. Sonochem.21 (2014) 60. 10.1016/j.ultsonch.2013.07.005Search in Google Scholar PubMed
[25] R. Phillips , S.Rohani, J.Baldyga: Aiche J.45 (1999) 82. 10.1002/aic.690450108Search in Google Scholar
[26] A. Tulcidas , S.Nascimento, B.Santos, C.Alvarez, S.Pawlowski, F.Rocha: Sep. Purif. Technol.213 (2019) 56. 10.1016/j.seppur.2018.12.019Search in Google Scholar
[27] E.R. Townsend , W.J.P.van Enckevort, P.Tinnemans, M.A.R.Blijlevens, J.A.M.Meijer, E.Vlieg: Cryst. Growth Des.18 (2018) 755. PMid:29910693; 10.1021/acs.cgd.7b01170Search in Google Scholar PubMed PubMed Central
© 2020, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Solidification processes of as-cast alloys and phase equilibria at 1 300 °C of the Nb–Si–V ternary system
- Compressive properties and energy absorption response of cBN added Al composite foams
- Deformation characteristics of Cu-30 % Zn alloy subjected to dynamic equal channel angular pressing (DECAP)
- Stress-based forming limit diagrams (SFLD) considering strain rate effect and ductile damage phenomenon
- Processing and properties of ultrafine-grained Mg-3Al-1Zn magnesium alloy microtubes fabricated via isothermal hot microforming of SPD processed precursors
- The effect of in-situ formed TiB2 particles on microstructural and mechanical properties of laser melted copper alloy
- Nanoindentation study on Al86Ni8Y6 glassy alloy synthesized via mechanical alloying and spark plasma sintering
- Synthesis of nanosized cadmium ferrite and assaying its magnetic and dielectric properties by analytical and physical techniques
- BN nanosheet modified SnO materials for enhancing photocatalytic properties
- Preparation of salt microparticles via the anti-solvent recrystallization process
- Short Communications
- CVD grown graphene on commercial and electroplated Cu substrates: Raman spectroscopy analysis
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Solidification processes of as-cast alloys and phase equilibria at 1 300 °C of the Nb–Si–V ternary system
- Compressive properties and energy absorption response of cBN added Al composite foams
- Deformation characteristics of Cu-30 % Zn alloy subjected to dynamic equal channel angular pressing (DECAP)
- Stress-based forming limit diagrams (SFLD) considering strain rate effect and ductile damage phenomenon
- Processing and properties of ultrafine-grained Mg-3Al-1Zn magnesium alloy microtubes fabricated via isothermal hot microforming of SPD processed precursors
- The effect of in-situ formed TiB2 particles on microstructural and mechanical properties of laser melted copper alloy
- Nanoindentation study on Al86Ni8Y6 glassy alloy synthesized via mechanical alloying and spark plasma sintering
- Synthesis of nanosized cadmium ferrite and assaying its magnetic and dielectric properties by analytical and physical techniques
- BN nanosheet modified SnO materials for enhancing photocatalytic properties
- Preparation of salt microparticles via the anti-solvent recrystallization process
- Short Communications
- CVD grown graphene on commercial and electroplated Cu substrates: Raman spectroscopy analysis
- DGM News
- DGM News