Thermodynamic properties of cerium molybdate
-
Ai Nozaki
, Masao Morishita , Yoshiki Kinoshita and Hiroaki Yamamoto
Abstract
Ce2(MoO4)3 is a harmful phase formed in waste glasses from nuclear fuel. To determine the third-law entropy of Ce2(MoO4)3, the isobaric heat capacities,
References
[1] M.E.Ragoussi, S.Brassinnes: Radiochim. Acta103 (2015) 679–685. 10.1515/ract-2015-2392Search in Google Scholar
[2] H.Gamsjäger, J.Bugajski, T.Gajda, R.J.Lemire, W.Preis: Chemical Thermodynamics of Nickel, Nuclear Energy Agency, Organization for Economic Co-operation, Develpopment, Eds., Vol. 6, Chemical Thermodynamics, North Holland Elsevier Science Publisher B.V., Amsterdam (2005) 44.Search in Google Scholar
[3] M.Morishita, H.Houshiyama: Mater. Trans.56 (2015) 545–549. 10.2320/matertrans.M2014470Search in Google Scholar
[4] H.Gamsjäger, M.Morishita: Pure Appl. Chem.87 (2015) 461–476. 10.1515/pac-2014-1105Search in Google Scholar
[5] M.Morishita, M.Fukushima, H.Houshiyama: Mater. Trans.57 (2016) 46–51. 10.2320/matertrans.M2015189Search in Google Scholar
[6] E.Gamsjäger, M.Morishita, H.Gamsjäger: Monatsh. Chem. Chem. Mon.147 (2016) 263–267. 10.1007/s00706-015-1588-3Search in Google Scholar
[7] Y.Kinoshita, M.Morishita, A.Nozaki, H.Yamamoto: J. Jpn. Ins. Metal.81 (2017) 485–493. 10.2320/jinstmet.JAW201703Search in Google Scholar
[8] M.Morishita, H.Houshiyama, Y.Kinoshita, A.Nozaki, H.Yamamoto: Mater. Trans58 (2017) 868. 10.2320/matertrans.M2017005Search in Google Scholar
[9] M.Morishita, Y.Kinoshita, H.Houshiyama, A.Nozaki, H.Yamamoto: J. Chem. Thermodyn.114 (2017) 30–43. 10.1016/j.jct.2017.05.021Search in Google Scholar
[10] M.Morishita, Y.Kinoshita, H.Tanaka, A.Nozaki, H.Yamamoto: Monatsh. Chem. Chem. Mon.149 (2018) 341–356. 10.1007/s00706-017-2128-0Search in Google Scholar
[11] Y.Kinoshita, M.Morishita, A.Nozaki, H.Yamamoto: Mater. Trans.60 (2018) 111–120. 10.2320/matertrans.M2018305Search in Google Scholar
[12] M.Morishita, Y.Kinoshita, A.Nozaki, H.Yamamoto: Appl. Geochem.98 (2018) 310–320. 10.1016/j.apgeochem.2018.08.023Search in Google Scholar
[13] M.Morishita, A.Navrotsky, M.C.Wilding: J. Am. Ceram. Soc.87 (2004) 1550–1555. 10.1111/j.1551-2916.2004.01550.xSearch in Google Scholar
[14] W.Haller, D.H.Blackburn, F.E.Wagstaff, R.J.Charles: J. Am. Ceram. Soc.53 (1970) 34–39. 10.1111/j.1151-2916.1970.tb11995.xSearch in Google Scholar
[15] Y.Kawamoto, K.Clemens, M.Tomozawa: J. Am. Ceram. Soc.64 (1981) 292–296. 10.1111/j.1151-2916.1981.tb09605.xSearch in Google Scholar
[16] H.Wakabayashi, S.Fukumoto, H.Yanaka, R.Terai: Yogyo-Kyokai-Shi95 (1987) 486. 10.2109/jcersj1950.95.1101_486Search in Google Scholar
[17] N.C.Hyatt, R.J.Short, R.J.Hand, W.E.Lee: Ceram. Trans.168 (2005) 179–187.Search in Google Scholar
[18] M.Morishita, K.Koyama: Z. Metallkd.94 (2003) 967–971. 10.3139/146.030967Search in Google Scholar
[19] M.Morishita, K.Koyama, K.Tsuboki: Z. Metallkd.95 (2004) 708–712. 10.3139/146.018007Search in Google Scholar
[20] M.Morishita, K.Koyama, S.Shikata, M.Kusumoto: Metallkd. Mater. Trans.B 35 (2004) 891–895. 10.1007/s11663-004-0083-8Search in Google Scholar
[21] M.Morishita, K.Koyama, S.Shikata, M.Kusumoto: Z. Metallkd.96 (2005) 32–37. 10.3139/146.018072Search in Google Scholar
[22] M.Morishita, H.Yamamoto, K.Tsuboki, Y.Matsumoto: Mater. Trans.47 (2006) 1555–1559. 10.2320/matertrans.47.1555Search in Google Scholar
[23] M.Morishita, H.Yamamoto, M.Kodera, K.Ikeda, S.Miura, Y.Yamada: Thermochim. Acta526 (2011) 90–98. 10.1016/j.tca.2011.08.025Search in Google Scholar
[24] M.Morishita, K.Ikeda, N.Nishimura, S.Miura, Y.Yamada: J. Phys. Chem.C 116 (2012) 20489–20495. 10.1021/jp301259nSearch in Google Scholar
[25] M.Morishita, H.Yamamoto, S.Shikada, M.Kusumoto, Y.Matsumoto, A.Onoue, N.Nishimura, H.Ohtani: Int. J. Quantum Chem.109 (2009) 2695–2705. 10.1002/qua.22060Search in Google Scholar
[26] M.Morishita, H.Yamamoto, S.Shikada, M.Kusumoto, Y.Matsumoto: Mater. Trans.51 (2010) 1705–1708. 10.2320/matertrans.MAW201024Search in Google Scholar
[27] S.Dash, N.K.Shukla: J. Therm. Anal. Calorim.112 (2013) 193–200. 10.1007/s10973-012-2850-0Search in Google Scholar
[28] R.Pankajavalli, O.M.Sreedharan: J. Nucl. Mater.172 (1990) 151–154. 10.1016/0022-3115(90)90432-MSearch in Google Scholar
[29] M.S.Samant, S.R.Bharadwaj, A.S.Kerkar, S.R.Dharwadkar: J. Nucl. Mater.200 (1993) 157–161. 10.1016/0022-3115(93)90325-SSearch in Google Scholar
[30] Z.Singh, S.Dash, R.Prasad, V.Venugopal: J. Alloys Compd.244 (1996) 85–89. 10.1016/S0925-8388(96)02429-2Search in Google Scholar
[31] M.Morishita, A.Navrotsky: J. Am. Ceram. Soc.86 (2003) 1927–1932. 10.1111/j.1151-2916.2003.tb03583.xSearch in Google Scholar
[32] K.Koyama, M.Morishita, T.Harada, N.Maekawa: Metall. Mater. Trans. B,34 (2003) 653–659. 10.1007/s11663-003-0036-7Search in Google Scholar
[33] S.Dash, Z.Singh, N.D.Dahale, R.Prasad, V.Venugopal: J. Alloys Compd.302 (2000) 75–81. 10.1016/s0925-8388(99)00822-1Search in Google Scholar
[34] E.V.Suleimanov, A.V.Golubev, E.V.Alekseev, C.A.Geiger, W.Depmeier, V.G.Krivovichev: J. Chem. Thermodyn.42 (2010) 873–878. 10.1016/j.jct.2010.02.011Search in Google Scholar
[35] G.Chattopadhyay, S.N.Tripathi, A.S.Kerkar: J. Am. Ceram. Soc.67 (1984) 610–614. 10.1111/j.1151-2916.1984.tb19604.xSearch in Google Scholar
[36] S.N.Tripathi, G.Chattopadhyay, A.S.Kerkar, M.S.Chandrasekharaiah: J. Am. Ceram. Soc.68 (1985) 232–235. 10.1111/j.1151-2916.1985.tb15314.xSearch in Google Scholar
[37] Q.Huang, J.Xu, W.Li: Solid State Ionics32–33 (1989) 244–249. 10.1016/0167-2738(89)90228-2Search in Google Scholar
[38] J.S.Hwang, K.J.Lin, C.Tien: Review of Scientific Instruments,68 (1997) 94–101. 10.1063/1.1147722Search in Google Scholar
[39] J.C.Lashley, M.F.Hundley, A.Migliori, J.L.Sarrao, P.G.Pagliuso, T.W.Darling, M.Jaime, J.C.Cooley, W.L.Hults, L.Morales, D.J.Thoma, J.L.Smith, J.Boerio-Goates, B.F.Woodfield, G.R.Stewart, R.A.Fisher, N.E.Phillips: Cryogenics43 (2003) 369–378. 10.1016/S0011-2275(03)00092-4Search in Google Scholar
[40] Q.Shi, T.J.Park, J.Schliesser, A.Navrotsky, B.F.Woodfield: J. Chem. Thermodyn.72 (2014) 77–84. 10.1016/j.jct.2014.01.021Search in Google Scholar
[41] M.Okaji: Teion-Kougaku36 (2001) 46–50. 10.2221/jcsj.36.46Search in Google Scholar
[42] Q.Shi, L.Zhang, M.E.Schlesinger, J.Boerio-Goates, B.F.Woodfield: J. Chem. Thermodyn.62 (2013) 35–42. 10.1016/j.jct.2013.02.017Search in Google Scholar
[43] J.M.Schliesser, S.J.Smith, G.Li, L.Li, T.F.Walker, T.Parry, J.Boerio-Goates, B.F.Woodfield: J. Chem. Thermodyn.81 (2015) 311–322. 10.1016/j.jct.2014.08.002Search in Google Scholar
[44] L.Wu, J.Schliesser, B.F.Woodfield, H.Xu, A.Navrotsky: J. Chem. Thermodyn.93 (2016) 1–7. 10.1016/j.jct.2015.09.019Search in Google Scholar
[45] C.Ma, Q.Shi, B.F.Woodfield, A.Navrotsky: J. Chem. Thermodyn.60 (2013) 191–196. 10.1016/j.jct.2013.01.004Search in Google Scholar
[46] J.E.Gordon, C.Marcenat, J.P.Franck, I.Isaac, G.Zhang, R.Lortz, C.Meingast, F.Bouquet, R.A.Fisher, N.E.Phillips: Phys. Rev.B 65 (2001). 10.1103/PhysRevB.65.024441Search in Google Scholar
[47] M.Dixon, F.E.Hoare, T.M.Holden, D.E.Moody: The Low Temperature Specific Heats of Some Pure Metals (Cu, Ag, Pt, Al, Ni Fe Co), Proc. Royal Society of London,Vol. 285, London (1965) 561–580. 10.1098/rspa.1965.0125Search in Google Scholar
[48] C.Kittel: Elementary Solid State Physics, John Wiley & Sons. Inc., New York (1962) 45–65.Search in Google Scholar
[49] T.H.K.Barron, G.K.White: Heat Capacity and Thermal Expansion at Low Temperatures, Plenum Publishers, New York (1999) 234. 10.1007/978-1-4615-4695-5Search in Google Scholar
[50] K.K.Kelley, E.G.King: Contribution to the Data Theoretical Metallurgy, Part 16., Bur. Mines Invest. Bull.592 (1961) 1–149.Search in Google Scholar
[51] J.M.D.Coey, S.Von Molnar, A.Torressen: J. Less Common Met.151 (1989) 191–194. 10.1016/0022-5088(89)90316-0Search in Google Scholar
[52] M.Morishita, K.Koyama, T.Shiraga: Microelectronic Engineering81 (2005) 382–388. 10.1016/j.mee.2005.03.037Search in Google Scholar
[53] K.Niira: Phys. Rev.117 (1960) 129–133. 10.1103/PhysRev.117.129Search in Google Scholar
[54] R.A.Fisher, F.Bouquet, N.E.Phillips, J.P.Franck, G.Zhang, J.E.Gordon, C.Marcenat: Phys. Rev.B 64 (2001) 134425. 10.1103/PhysRevB.64.134425Search in Google Scholar
[55] C.L.Snow, Q.Shi, J.Boerio-Goates, B.F.Woodfield: J. Phys. Chem.C 114 (2010) 21100–21108. 10.1021/jp1072704Search in Google Scholar
[56] F.J.Morin, J.P.Maita: Phys. Rev.129 (1963) 1115–1120. 10.1103/PhysRev.129.1115Search in Google Scholar
[57] L.M.Khriplovich, I.E.Paukov: J. Chem. Therm.15 (1983) 333–337. 10.1016/0021-9614(83)90062-9Search in Google Scholar
[58] J.R.Taylor: An Introduction to Error Analysis: The Study of Uncertainty in Physical Measurement. Oxford University Press, Oxford (1982).Search in Google Scholar
[59] J.M.Lock: Proc. Phys. Soc. London Sect.B 70 (1957) 566–576. 10.1088/0370-1301/70/5/303Search in Google Scholar
[60] T.Miyake, H.Akai: J. Phys. Soc. Jpn.87 (2018) 41009. 10.7566/JPSJ.87.041009Search in Google Scholar
[61] J.F.Herbst, L.G.Hector: J. Alloys Compd.693 (2017) 238–244. 10.1016/j.jallcom.2016.09.138Search in Google Scholar
[62] W.W.Weller, E.G.King: Bur. Mines Rep. Invest.6147 (1963).Search in Google Scholar
[63] D.L.Martin: Phys. Rev.B 8 (1973) 5357–5360. 10.1103/PhysRevB.8.5357Search in Google Scholar
[64] R.Stevens, J.Boerio-Goates: J. Chem. Thermodyn.36 (2004) 857–863. 10.1016/j.jct.2004.06.008Search in Google Scholar
[65] R.Sabbah, A.Xu-Wu, J.S.Chickos, M.L.P.Leitão, M.V.Roux, L.A.Torres: Thermochim. Acta331 (1999) 93–204. 10.1016/S0040-6031(99)00009-XSearch in Google Scholar
[66] I.Barin: Thermochemical Data of Pure Substance, Part II, VCH Verlag (1989) 1044.Search in Google Scholar
[67] D.D.Wagman, W.H.Evans, V.B.Parker, R.H.Schumm, I.Halow, S.M.Bailey, K.L.Churney, R.L.Nuttall: J. Phys. Chem. Ref. Data11 (1982) 234.Search in Google Scholar
[68] A.P.Zhidikowa, S.D.Malinin: Geokhimiya (1972) 28.Search in Google Scholar
[69] M.E.Essington: Environ. Sci. Technol.24 (1990) 214. 10.1021/es00072a010Search in Google Scholar
[70] B.Grambow, R.Müller, A.Rother: Radiochim. Acta58–59 (1992). 10.1524/ract.1992.5859.1.71Search in Google Scholar
[71] A.R.Felmy, D.Rai, M.J.Mason: J. Solution Chem.21 (1992) 525–532. 10.1007/bf00649561Search in Google Scholar
[72] H.Gamsjäger: Pure Appl. Chem.85 (2013) 2059–2076. 10.1351/pac-con-13-01-04Search in Google Scholar
[73] A.R.Felmy, D.Rai, M.J.Mason, R.W.Fulton: Radiochim. Acta69 (1995) 177–183. 10.1524/ract.1995.69.3.177Search in Google Scholar
© 2019, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Dendritic solidification of highly undercooled dilute alloys
- Dendritic structure formation of magnesium alloys for the manipulation of corrosion properties: Part 2 – corrosion
- Thermodynamic properties of cerium molybdate
- A new approach to reduce springback in sheet metal bending using digital image correlation
- Effects of minor La and Ce additions on microstructure and mechanical properties of A201 alloy
- Strengthening and toughening of laminated TiAl composite sheets by titanium alloy layers and carbide particles
- A fractal analysis for the microstructures of β-SiC films
- Synthesis of La2(Zr0.7Ce0.3)2O7 nanopowder using a simple chemical precipitation method and heat treatment at high temperature
- Optimized microstructure with alumina micropowder and its effects on properties of phosphate-bonded castables
- Co-deposition and electrokinetic behavior of TiO2–WO3 nanoparticles under non-uniform AC field
- 3D nanoflower-structured TiO2 photoanode for efficient photoelectrochemical water splitting
- Short Communications
- Investigation of Al2O3/TiB2 ceramic cutting tool materials with the addition of core–shell structured Ni–B coated CaF2
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Dendritic solidification of highly undercooled dilute alloys
- Dendritic structure formation of magnesium alloys for the manipulation of corrosion properties: Part 2 – corrosion
- Thermodynamic properties of cerium molybdate
- A new approach to reduce springback in sheet metal bending using digital image correlation
- Effects of minor La and Ce additions on microstructure and mechanical properties of A201 alloy
- Strengthening and toughening of laminated TiAl composite sheets by titanium alloy layers and carbide particles
- A fractal analysis for the microstructures of β-SiC films
- Synthesis of La2(Zr0.7Ce0.3)2O7 nanopowder using a simple chemical precipitation method and heat treatment at high temperature
- Optimized microstructure with alumina micropowder and its effects on properties of phosphate-bonded castables
- Co-deposition and electrokinetic behavior of TiO2–WO3 nanoparticles under non-uniform AC field
- 3D nanoflower-structured TiO2 photoanode for efficient photoelectrochemical water splitting
- Short Communications
- Investigation of Al2O3/TiB2 ceramic cutting tool materials with the addition of core–shell structured Ni–B coated CaF2
- DGM News
- DGM News