Synthesis and performance of Al3+-doped cathode materials 0.6Li[Li1/3Mn2/3]O2 · 0.4Li[Ni1/3Mn1/3Co(1/3-y)Aly]O2 by high temperature solid-state method
-
Aili Zhang
, Axiang Li , Shuai Tong , Lina Yv , Xinran Yang , Shihang Dai und Zhongcai Shao
Abstract
0.6Li[Li1/3Mn2/3]O2 · 0.4Li[Ni1/3Mn1/3Co(1/3-y)Aly]O2 (y = 0, 0.03, 0.08, 0.13) was prepared by a high-temperature solid-state method as cathode material for lithium-ion batteries. X-ray diffraction and scanning electron microscopy were used to assess the structure and morphology of the samples. Electrochemical performance testing, AC impedance testing, and cyclic voltammetry testing were performed to study various aspects of the cathode materials. The results showed that the addition of Al3+ had little effect on the charge–discharge performance, but the cycling performance and stability of the material were significantly enhanced. When the doping fraction of Al3+ was 0.08, the cathode material 0.6Li[Li1/3Mn2/3]O2 · 0.4Li[Ni1/3Mn1/3Co(19/75) Al0.08]O2 had good electrochemical performance. The first discharge specific capacity reached 161.1 mAh · g−1 in the charge and discharge test at 0.1 C rate. After 20 cycles, the discharge capacity was still 159.7 mAh · g−1. The charge–discharge specific capacity had almost no attenuation.
References
[1] M.Freire, N.V.Kosova, C.Jordy, D.Chateigner, O.I.Lebedev, A.Maignan, V.Pralong: Nat. Mater.15 (2016) 173. PMid:26595122; 10.1038/nmat4479Suche in Google Scholar PubMed
[2] H.Lu, J.Hagberg, G.Lindbergh, A.Cornell: J. Power Sources4 (2018) 17. 10.3390/batteries4020017Suche in Google Scholar
[3] L.Li, C.Feng, H.Zheng, J.Wang, P.He: Adv. Mater.9 (2017) 331. 10.1166/sam.2017.2298Suche in Google Scholar
[4] H.H.Ryu, K.J.Park, C.S.Yoon, Y.K.Sun: Chem. Mater.30 (2018) 1155. 10.1021/acs.chemmater.7b05269Suche in Google Scholar
[5] X.Dong, L.Chen, J.Liu, S.Haller, Y.Wang, Y.Xia: Sci. Adv.2 (2016) e1501038. PMid:26844298; 10.1126/sciadv.1501038Suche in Google Scholar PubMed PubMed Central
[6] J.Xiao, J.Li, Z.Xu: Environ. Sci. Technol.51 (2017) 1. PMid:27951641; 10.1021/acs.est.7b02561Suche in Google Scholar PubMed
[7] F.Schipper, E.M.Erickson, C.Erk, J.Y.Shin, F.F.Chesneau, D.Aurbach: J. Electrochem. Soc.164 (2017) A6220. 10.1149/2.0351701jesSuche in Google Scholar
[8] G.E.Blomgren: J. Electrochem. Soc.164 (2017) A5019. 10.1149/2.0251701jesSuche in Google Scholar
[9] J.Ma, P.Hu, G.Cui, L.Chen: Chem. Mater.28 (2016) 3578. 10.1021/acs.chemmater.6b00948Suche in Google Scholar
[10] X.Tian, Y.Zhou, X.Tu, Z.Zhang, G.Du: J. Power Sources340 (2017) 40. 10.1016/j.jpowsour.2016.11.049Suche in Google Scholar
[11] T.Yamanaka, H.Nakagawa, S.Tsubouchi, Y.Domi, T.Doi, T.Abe, Z.Ogumi: Electrochim. Acta234 (2017) 93. 10.1016/j.electacta.2017.03.060Suche in Google Scholar
[12] B.Shen, Q.Liu, L.Wang, G.Yin, P.Zuo, Y.Ma, Y.Gao: Electrochem. Commun.83 (2017) 106. 10.1016/j.elecom.2017.09.002Suche in Google Scholar
[13] J.H.Shim, N.H.Cho, S.Lee: Electrochim. Acta243 (2017) 162. 10.1016/j.electacta.2017.05.073Suche in Google Scholar
[14] F.Ding, J.Li, F.Deng, G.Xu, Y.Liu, K.Yang, F.Kang: ACS Appl. Mater. Interfaces9 (2017) 27936. 10.1021/acsami.7b07221Suche in Google Scholar PubMed
[15] F.Lu, X.Gao, A.Wu, N.Sun, L.Shi, L.Zheng: J. Phys. Chem. C121 (2017) 17756. 10.1021/acs.jpcc.7b06242Suche in Google Scholar
[16] Y.Deng, J.Mou, H.Wu, L.Zhou, Q.Zheng, K.H.Lam, D.Lin: ChemElectroChem.4 (2017) 1362. 10.1002/celc.201600823Suche in Google Scholar
[17] M.R.Laskar, D.H.K.Jackson, Y.Guan, S.Xu, S.Fang, M.Dreibelbis, T.F.Kuech: ACS Appl. Mater. Interfaces8 (2016) 10572. PMid:27035035; 10.1021/acsami.5b11878Suche in Google Scholar PubMed
[18] P.Sun, Y.Ma, T.Zhai, H.Li: Electrochim. Acta191 (2016) 237. 10.1016/j.electacta.2016.01.087Suche in Google Scholar
[19] S.Gu, H.Wang, C.Wu, Y.Bai, H.Li, F.Wu: E. Storage. Mat.6 (2017) 9. 10.1016/j.ensm.2016.09.001Suche in Google Scholar
[20] Y.L.Wang, X.Huang, F.Li, J.S.Cao, S.H.Ye: RSC Adv.5 (2015) 49651. 10.1039/C5RA03971ASuche in Google Scholar
[21] H.Dharmesh, D.K.Kothari, Kanchan: Physica B501 (2016) 90. 10.1016/j.physb.2016.08.020Suche in Google Scholar
[22] M.Masoumi, D.M.Cupid, T.L.Reichmann, K.Chang, D.Music, J.M.Schneider, H.J.Seifert: Int. J. Mater. Res.108 (2017) 869. 10.3139/146.111553Suche in Google Scholar
[23] Y.Chen, G.Xu, J.Li, Y.Zhang, Z.Chen, F.Kang: Electrochim. Acta.87 (2013) 686. 10.1016/j.electacta.2012.09.024Suche in Google Scholar
[24] S.Priyono, J.Triwibowo, B.Prihandoko: AIP Publishing LLC.1711 (2016) 527. 10.1063/1.4941634Suche in Google Scholar
[25] D.Liu, G.T.R.Palmore: ACS Sustainable Chem. Eng.5 (2017) 5766. 10.1021/acssuschemeng.7b00371Suche in Google Scholar
[26] N.M.Trease, I.D.Seymour, M.D.Radin, H.D.Liu, H.Liu, S.Hy: Chem. Mater.28 (2016) 8170. 10.1021/acs.chemmater.6b02797Suche in Google Scholar
[27] M.Liang, D.Song, H.Zhang, X.Shi, Q.Wang, L.Zhang: ACS Appl. Mater. Interfaces.9 (2017) 38567. 10.1021/acsami.7b12306Suche in Google Scholar PubMed
[28] L.Sun, X.Yi, X.Ren, P.Zhang, J.Liu: J. Electrochem. Soc.163 (2016) 766. 10.1149/2.1071605jesSuche in Google Scholar
[29] A.R.Madram, R.Daneshtalab, M.R.Sovizi: RSC Adv.6 (2016) 101477. 10.1039/C6RA11800CSuche in Google Scholar
[30] J.Deng, Y.Xu, L.Xiong, L.Li, X.Sun, Y.Zhang: J. Alloys Compd.677 (2016) 18. 10.1016/j.jallcom.2016.03.256Suche in Google Scholar
[31] P.Sun, Y.Ma, T.Zhai, H.Li: Electrochim. Acta191 (2016) 237. 10.1016/j.electacta.2016.01.087Suche in Google Scholar
[32] H.El-Shinawi, G.W.Paterson, D.A.MacLaren, E.J.Cussen, S.A.Corr: J. Mater. Chem. A5 (2017) 319. 10.1039/C6TA06961DSuche in Google Scholar
[33] K.R.Rahman, F.U.Z.Chowdhury, M.N.I.Khan: J. Magn. Magn. Mater.443 (2017) 366. 10.1016/j.jmmm.2017.07.098Suche in Google Scholar
[34] Y.C.Liu, N.L.Wu, W.R.Liu: JNN.18 (2018) 68. 10.1166/jnn.2018.14550Suche in Google Scholar PubMed
© 2019, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Static recrystallization characteristics and kinetics of high-silicon steels for direct quenching and partitioning
- Kinetics of intermetallic compound layers during initial period of reaction between mild steel and molten aluminum
- Effects of Cr and Zn on the interfacial microstructures of borides in Fe–Cr–B cast steels during hot-dipping in Al–Zn alloys
- Hot deformation behaviour of and processing map for an Ni-based austenitic stainless steel
- Design, microstructural characterization and heat treatment of novel Cu0.5FeNiVAlx high-entropy alloys
- Effects of temperature field and SiC nanoparticles on microstructure and mechanical properties of n-SiCp/Mg-9 %Al composites fabricated by ultrasonication-assisted semi-solid hot pressing of powder
- Investigation of the microstructure and mechanical properties of NbB2 particle reinforced aluminum matrix composites
- Effect of Al2O3/SiO2 ratio on viscosity and structure of CaO–Al2O3–SiO2–CaF2–MgO slag
- Microstructure and oxidation of Ni–Fe2O3 composite coating on AISI 304 stainless steel
- Synthesis and performance of Al3+-doped cathode materials 0.6Li[Li1/3Mn2/3]O2 · 0.4Li[Ni1/3Mn1/3Co(1/3-y)Aly]O2 by high temperature solid-state method
- Growth and photo-electrochemical properties of rutile TiO2 nanowire arrays prepared by the hydrothermal method
- Deposition of fine copper film on samples placed internally and externally to the cathodic cage
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Static recrystallization characteristics and kinetics of high-silicon steels for direct quenching and partitioning
- Kinetics of intermetallic compound layers during initial period of reaction between mild steel and molten aluminum
- Effects of Cr and Zn on the interfacial microstructures of borides in Fe–Cr–B cast steels during hot-dipping in Al–Zn alloys
- Hot deformation behaviour of and processing map for an Ni-based austenitic stainless steel
- Design, microstructural characterization and heat treatment of novel Cu0.5FeNiVAlx high-entropy alloys
- Effects of temperature field and SiC nanoparticles on microstructure and mechanical properties of n-SiCp/Mg-9 %Al composites fabricated by ultrasonication-assisted semi-solid hot pressing of powder
- Investigation of the microstructure and mechanical properties of NbB2 particle reinforced aluminum matrix composites
- Effect of Al2O3/SiO2 ratio on viscosity and structure of CaO–Al2O3–SiO2–CaF2–MgO slag
- Microstructure and oxidation of Ni–Fe2O3 composite coating on AISI 304 stainless steel
- Synthesis and performance of Al3+-doped cathode materials 0.6Li[Li1/3Mn2/3]O2 · 0.4Li[Ni1/3Mn1/3Co(1/3-y)Aly]O2 by high temperature solid-state method
- Growth and photo-electrochemical properties of rutile TiO2 nanowire arrays prepared by the hydrothermal method
- Deposition of fine copper film on samples placed internally and externally to the cathodic cage
- DGM News
- DGM News