Kinetics of intermetallic compound layers during initial period of reaction between mild steel and molten aluminum
-
Huan He
, Wenqin Gou , Shengxiang Wang , Yu Hou , Chao Ma und Patricio F. Mendez
Abstract
Hot dip aluminizing of mild steel at different temperatures was conducted to reveal the influence of reaction temperature and time on interfacial intermetallic compounds (IMCs). Scanning electron microscopy, energy dispersive X-ray spectrometry and X-ray diffraction were employed to investigate the interfacial microstructures. The IMCs of the dipping interface consisted of a thick layer of η-Fe2Al5 between 4.2–132.2 μm next to the steel and a thin layer of θ-Fe4Al13 between 0–5.5 μm close to the aluminum. With increasing dipping temperature and time, the total thickness of IMCs (Fe2Al5 plus Fe4Al13) increased. Specifically, the growth of the Fe2Al5 layer can be described by parabolic rate laws. An activation energy of 93 kJ mol−1 was obtained, combining both the results from the present work and previous studies in the temperature range of 675–900°C. The change in Fe4Al13 thickness is not significant compared with the Fe2Al5. However, the decrease in IMC thickness of the Fe4Al13 with dipping temperature was observed for the first time and had never been reported before. Moreover, it can be clearly observed that the thickness of the Fe4Al13 decreased with dipping time based on the linear fitting results by excluding the result of the initial 1 s. A possible mechanism is that interfacial dynamics and thermodynamics work for the dissolution and decomposition of the Fe4Al13 layer. Higher temperature accelerates the dissolution of the θ layer.
References
[1] C.Tan, J.Yang, X.Zhao, K.Zhang, X.Song, B.Chen, L.Li, J.Feng: J. Alloys Compd.764 (2018) 186. 10.1016/j.jallcom.2018.06.039Suche in Google Scholar
[2] K.Martinsen, S.J.Hu, B.E.Carlson: CIRP Ann.64 (2015) 679. 10.1016/j.cirp.2015.05.006Suche in Google Scholar
[3] M.Potesser, T.Schoeberl, H.Antrekowitsch, J.Bruckner, in: EPD Congress 2006, San Antonio, Texas, USA (2006) 167.Suche in Google Scholar
[4] M.Yasuyama, K.Ogawa, T.Taka: Weld. Int.10 (1996) 963. 10.1080/09507119609549121Suche in Google Scholar
[5] S.Chen, D.Yang, M.Zhang, J.Huang, X.Zhao: Metall. Mater. Trans. A47 (2016) 5088. 10.1007/s11661-016-3667-4Suche in Google Scholar
[6] K.Bouché, F.Barbier, A.Coulet: Mater. Sci. Eng. A249 (1998) 167. 10.1016/S0921-5093(98)00573-5Suche in Google Scholar
[7] A.Bouayad, C.Gerometta, A.Belkebir, A.Ambari: Mater. Sci. Eng. A363 (2003) 53. 10.1016/S0921-5093(03)00469-6Suche in Google Scholar
[8] H.Springer, A.Kostka, E.Payton, D.Raabe, A.Kaysser-Pyzalla, G.Eggeler: Acta Mater.59 (2011) 1586. 10.1016/j.actamat.2010.11.023Suche in Google Scholar
[9] J.Rong, Z.Kang, S.Chen, D.Yang, J.Huang, J.Yang: Mater. Charact.132 (2017) 413. 10.1016/j.matchar.2017.09.012Suche in Google Scholar
[10] S.Shankar, D.Apelian: Metall. Mater. Trans. B33 (2002) 465. 10.1007/s11663-002-0057-7Suche in Google Scholar
[11] N.Takata, M.Nishimoto, S.Kobayashi, M.Takeyama: Intermetallics54 (2014) 136. 10.1016/j.intermet.2014.06.003Suche in Google Scholar
[12] A.Van Alboom, B.Lemmens, B.Breitbach, E.De Grave, S.Cottenier, K.Verbeken: Surf. Coat. Tech.324 (2017) 419. 10.1016/j.surfcoat.2017.05.091Suche in Google Scholar
[13] L.Z.Cheng, Y.H.Zhang: Physical Chemistry, Shanghai Science & Technology Press, Shanghai (2007). 10.1016/j.chemphys.2007.01.014Suche in Google Scholar
[14] Y.Li, Q.Jia, Z.Zhu, W.Gao, H.Chen: Surf. Rev. Lett.24 (2017) 1750046–1. 10.1142/S0218625X17500469Suche in Google Scholar
[15] G.Eggeler, W.Auer, H.Kaesche: Z. Metallkd.77 (1986) 239.Suche in Google Scholar
[16] H.Shahverdi, M.Ghomashchi, S.Shabestari, J.Hejazi: J. Mater. Sci.37 (2002) 1061. 10.1023/A:1014324603763Suche in Google Scholar
[17] S.G.Denner, R.Jones: Met. Technol.4 (1977) 167. 10.1179/030716977803292574Suche in Google Scholar
[18] V.Yeremenko, Y.V.Natanzon, V.I.Dybkov: J. Mater. Sci.16 (1981) 1748. 10.1007/BF00540620Suche in Google Scholar
[19] G.Eggeler, W.Auer, H.Kaesche: J. Mater. Sci.21 (1986) 3348. 10.1007/BF00553379Suche in Google Scholar
[20] R.Richards, R.Jones, P.Clements, H.Clarke: Int. Mater. Rev.39 (1994) 191. 10.1179/imr.1994.39.5.191Suche in Google Scholar
[21] F.J.J.van Loo, G.D.Rieck: Acta Metall.21 (1973) 73. 10.1016/0001-6160(73)90221-6Suche in Google Scholar
[22] S.Bader, W.Gust, H.Hieber: Acta Metall. Mater.43 (1995) 329. 10.1016/0956-7151(95)90289-9Suche in Google Scholar
[23] M.Schaefer, R.A.Fournelle, J.Liang: J. Electron. Mater.27 (1998) 1167. 10.1007/s11664-998-0066-7Suche in Google Scholar
[24] M.Mirjalili, M.Soltanieh, K.Matsuura, M.Ohno: Intermetallics32 (2013) 297. 10.1016/j.intermet.2012.08.017Suche in Google Scholar
[25] Z.Ding, Q.Hu, W.Lu, X.Ge, S.Cao, S.Sun, T.Yang, M.Xia, J.Li: Mater. Charact.136 (2017) 157. 10.1016/j.matchar.2017.12.024Suche in Google Scholar
[26] N.Tang, Y.Li, S.Kurosu, Y.Koizumi, H.Matsumoto, A.Chiba: Corros. Sci.60 (2012) 32. 10.1016/j.corsci.2012.04.015Suche in Google Scholar
[27] D.Naoi, M.Kajihara: Mat. Sci. Eng.: A459 (2007) 375. 10.1016/j.msea.2007.01.099Suche in Google Scholar
[28] V.I.Dybkov, Reaction Diffusion and Solid State Chemical Kinetics, Trans Tech Publications, Stafa-Zuerich (2010). PMid:20693967;Suche in Google Scholar
[29] U.Gosele, K.N.Tu: J. Appl. Phys.53 (1982) 3252. 10.1063/1.331028Suche in Google Scholar
[30] P.J.Rossi, N.Zotov, E.Bischoff, E.J.Mittemeijer: Acta Mater.103 (2016) 174. 10.1016/j.actamat.2015.09.042Suche in Google Scholar
[31] H.He, S.Lin, C.Yang, C.Fan, Z.Chen: J. Mater. Eng. Perform.22 (2013) 3315. 10.1007/s11665-013-0615-ySuche in Google Scholar
© 2019, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Static recrystallization characteristics and kinetics of high-silicon steels for direct quenching and partitioning
- Kinetics of intermetallic compound layers during initial period of reaction between mild steel and molten aluminum
- Effects of Cr and Zn on the interfacial microstructures of borides in Fe–Cr–B cast steels during hot-dipping in Al–Zn alloys
- Hot deformation behaviour of and processing map for an Ni-based austenitic stainless steel
- Design, microstructural characterization and heat treatment of novel Cu0.5FeNiVAlx high-entropy alloys
- Effects of temperature field and SiC nanoparticles on microstructure and mechanical properties of n-SiCp/Mg-9 %Al composites fabricated by ultrasonication-assisted semi-solid hot pressing of powder
- Investigation of the microstructure and mechanical properties of NbB2 particle reinforced aluminum matrix composites
- Effect of Al2O3/SiO2 ratio on viscosity and structure of CaO–Al2O3–SiO2–CaF2–MgO slag
- Microstructure and oxidation of Ni–Fe2O3 composite coating on AISI 304 stainless steel
- Synthesis and performance of Al3+-doped cathode materials 0.6Li[Li1/3Mn2/3]O2 · 0.4Li[Ni1/3Mn1/3Co(1/3-y)Aly]O2 by high temperature solid-state method
- Growth and photo-electrochemical properties of rutile TiO2 nanowire arrays prepared by the hydrothermal method
- Deposition of fine copper film on samples placed internally and externally to the cathodic cage
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Static recrystallization characteristics and kinetics of high-silicon steels for direct quenching and partitioning
- Kinetics of intermetallic compound layers during initial period of reaction between mild steel and molten aluminum
- Effects of Cr and Zn on the interfacial microstructures of borides in Fe–Cr–B cast steels during hot-dipping in Al–Zn alloys
- Hot deformation behaviour of and processing map for an Ni-based austenitic stainless steel
- Design, microstructural characterization and heat treatment of novel Cu0.5FeNiVAlx high-entropy alloys
- Effects of temperature field and SiC nanoparticles on microstructure and mechanical properties of n-SiCp/Mg-9 %Al composites fabricated by ultrasonication-assisted semi-solid hot pressing of powder
- Investigation of the microstructure and mechanical properties of NbB2 particle reinforced aluminum matrix composites
- Effect of Al2O3/SiO2 ratio on viscosity and structure of CaO–Al2O3–SiO2–CaF2–MgO slag
- Microstructure and oxidation of Ni–Fe2O3 composite coating on AISI 304 stainless steel
- Synthesis and performance of Al3+-doped cathode materials 0.6Li[Li1/3Mn2/3]O2 · 0.4Li[Ni1/3Mn1/3Co(1/3-y)Aly]O2 by high temperature solid-state method
- Growth and photo-electrochemical properties of rutile TiO2 nanowire arrays prepared by the hydrothermal method
- Deposition of fine copper film on samples placed internally and externally to the cathodic cage
- DGM News
- DGM News