Startseite Technik Compressive behavior of double-layered functionally graded 316L stainless steel foam
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Compressive behavior of double-layered functionally graded 316L stainless steel foam

  • Morteza Mirzaei und Mohammad Hossein Paydar
Veröffentlicht/Copyright: 3. Oktober 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, double-layer structured 316L stainless steel foam is fabricated through a layer by layer space holder method. The fabricated foams contain uniform pore distribution and can be categorized as body centered cubic crystal structures. Each sample is made of two layers in the axial direction. To induce 51 vol.% and 62 vol.% porosity in the first and the second layers, 1.7 to 2.0 mm and 2.0 to 2.4 mm spherical carbamide particles are used, respectively. In this study, the effect of the height of each layer on the compressive behavior of the fabricated foams is investigated in detail. The results indicate that compressive deformation of the double-layered foams starts from the high porosity (62 vol.%) layer and then shifts to the low porosity (51 vol.%) layer. Deformation of the double-layered 316L foams demonstrates two plateau regions, whose lengths depend on the heights of the low and high porosity layers.


*Correspondence address, Prof. Mohammad Hossein Paydar, Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran, Tel.: +989177168020, E-mail:

References

[1] Y.Hangai, Y.Oba, S.Koyama, T.Utsunomiya: Metall. Mater. Trans.A 42 (2011) 35853589. 10.1007/s11661-011-0944-0Suche in Google Scholar

[2] J.Yang, S.Wang, Y.Ding, Z.Zheng, J.Yu: Mater. Sci. Eng.A680 (2017) 411420. 10.1016/j.msea.2016.11.010Suche in Google Scholar

[3] J.Zhang, Z.Wang, L.Zhao: Compos. Part B-Eng.85 (2015) 176187. 10.1016/j.compositesb.2015.09.045Suche in Google Scholar

[4] S.Kitipornchai, D.Chen, J.Yang: Mater. Des.116 (2017) 656665. 10.1016/j.matdes.2016.12.061Suche in Google Scholar

[5] Y.Hangai, T.Morita, S.Koyama, O.Kuwazuru, N.Yoshikawa: J. Mater. Eng. Perform.25 (2016) 36913696. 10.1007/s11665-016-2218-xSuche in Google Scholar

[6] Y.Torres, P.Trueba, J.J.Pavón, E.Chicardi, P.Kamm, F.García-Moreno, J.A.Rodríguez-Ortiz: Mater. Des.110 (2016) 179187. 10.1016/j.matdes.2016.07.135Suche in Google Scholar

[7] M.Liu, Y.Cheng, J.Liu: Compos. Part B-Eng.72 (2015) 97107. 10.1016/j.compositesb.2014.11.037Suche in Google Scholar

[8] A.H.Brothers, D.C.Dunand: Mater. Sci. Eng.A 489 (2008) 439443. 10.1016/j.msea.2007.11.076Suche in Google Scholar

[9] J.J.Pavón, P.Trueba, J.A.Rodríguez-Ortiz, Y.Torres: J. Mater. Sci.50 (2015) 61036112. 10.1007/s10853-015-9163-1Suche in Google Scholar

[10] Y.Hangai, T.Utsunomiya: Metall. Mater. Trans.A 40 (2009) 275277. 10.1007/s11661-008-9733-9Suche in Google Scholar

[11] Y.Hangai, K.Takahashi, R.Yamaguchi, T.Utsunomiya, S.Kitahara: Mater. Sci. Eng.A 556 (2012) 678684. 10.1016/j.msea.2012.07.047Suche in Google Scholar

[12] N.Bekoz, E.Oktay: J. Mater. Process. Technol.212 (2012) 21092116. 10.1016/j.jmatprotec.2012.05.015Suche in Google Scholar

[13] Y.H.Li, F.Wang, J.J.Li: Int. J. Mater. Res.108 (2017) 619624. 10.3139/146.111526Suche in Google Scholar

[14] K.Nishiyabu, S.Matsuzaki, S.Tanaka: Adv. with Sandw. Struct. Mater. Des. (2005) 733742. 10.1007/1-4020-3848-8_74Suche in Google Scholar

[15] N.Bekoz, E.Oktay: Mater. Sci. Eng.A 576 (2013) 8290. 10.1016/j.msea.2013.04.009Suche in Google Scholar

[16] I.Mutlu, E.Oktay: J. Porous Mater.19 (2012) 433440. 10.1007/s10934-011-9491-8Suche in Google Scholar

[17] D. rongTian, Y. huaPang, L.Yu, L.Sun: Int. J. Miner. Metall. Mater.23 (2016) 793798. 10.1007/s12613-016-1293-1Suche in Google Scholar

[18] S.Singh, N.Bhatnagar: J. Porous Mater. (2017) 118. 10.1007/s10934-017-0467-1Suche in Google Scholar

[19] M.Mirzaei, M.H.Paydar: Mater. Des.121 (2017) 442449. 10.1016/j.matdes.2017.02.069Suche in Google Scholar

[20] H.I.Bakan, D.Heaney, R.M.German: Powder Metall.44 (2001) 235242. 10.1179/003258901666392Suche in Google Scholar

[21] H.Bakan: Scr. Mater.55 (2006) 203206. 10.1016/j.scriptamat.2006.03.039Suche in Google Scholar

[22] M.Alizadeh, M.Mirzaei-Aliabadi: Mater. Des.35 (2012) 419424. 10.1016/j.matdes.2011.09.059Suche in Google Scholar

[23] L.J.Gibson, M.F.Ashby: Cellular solids: structure and properties, Cambridge University Press, 1999.Suche in Google Scholar

[24] M.F.Ashby: Metal foams: a design guide, Butterworth-Heinemann, 2000.Suche in Google Scholar

[25] Q.M.Li, I.Magkiriadis, J.J.Harrigan: J. Cell. Plast.42 (2006) 371392. 10.1177/0021955X06063519Suche in Google Scholar

[26] J.C.Qiao, Z.P.Xi, H.P.Tang, J.Y.Wang, J.L.Zhu: Mater. Trans.49 (2008) 29192921. 10.2320/matertrans.MEP2008322Suche in Google Scholar

[27] U.Ramamurty, A.Paul: Acta Mater.52 (2004) 869876. 10.1016/j.actamat.2003.10.021Suche in Google Scholar

[28] E.Koza, M.Leonowicz, S.Wojciechowski, F.Simancik: Mater. Lett.58 (2004) 132135. 10.1016/S0167-577X(03)00430-0Suche in Google Scholar

Received: 2018-02-09
Accepted: 2018-04-25
Published Online: 2018-10-03
Published in Print: 2018-10-16

© 2018, Carl Hanser Verlag, München

Heruntergeladen am 2.2.2026 von https://www.degruyterbrill.com/document/doi/10.3139/146.111689/html?lang=de
Button zum nach oben scrollen