Startseite Effects of heat treatment and testing temperature on the tensile properties of Al–Cu and Al–Cu–Si based alloys
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of heat treatment and testing temperature on the tensile properties of Al–Cu and Al–Cu–Si based alloys

  • A. I. Ibrahim , E. M. Elgallad , A. M. Samuel , H. W. Doty und F. H. Samuel
Veröffentlicht/Copyright: 26. März 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The present study aimed at investigating the effects of different additives and heat treatments on the mechanical properties of Al-2.4 %Cu-1.2 %Si-0.4 %Mg-0.4 %Fe-0.6 %Mn alloy, a casting alloy intended for automotive applications. The research was accomplished through a study of the tensile properties in both as-cast and heat-treated conditions, where the effects of different heat treatments, i. e., T5, T6, T62 and T7, commonly applied to aluminum casting alloys were evaluated at ambient and at high temperature (250 °C), using different holding (stabilization) times at testing temperature. Six alloys were prepared using 0.15 wt.% Ti grain-refined alloy – considered as the base alloy B0, and alloys B1 and B2, and D0, D1, and D2 containing various amounts of Ni, Cr, V, Zr and La, added individually or in combination. The D-series alloys had a higher Si content of 8 wt.%. The results showed that T6 and T62 treatments provide the best improvements in strength at room temperature. At high temperature, the tensile properties vary depending on the stabilization time and heat treatment. The best alloy quality is provided by B1 and D1 alloys in T62 (444/368 MPa) and T7 (430/360 MPa) conditions, respectively.


*Correspondence address, Professor Fawzy H. Samuel, Département des Sciences appliquées, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H 2B1, Canada, Tel.: +(418) 545-5406, Fax: +(418) 545-5012, E-mail: , Web www.uqac.ca

References

[1] P.N.Crepeau: Trans. Amer. F.103 (1995) 361.Suche in Google Scholar

[2] C.Triveno Rios, R.Caram, C.Bolfarini, W.J.Botta F, C.S.Kiminami: Acta Microsc.12(1) (2003) 77.Suche in Google Scholar

[3] Z.Ma, A.M.Samuel, F.H.Samuel, H.W.Doty, and S.Valtierra: Mater. Sci. Eng. A490 (2008) 36. 10.1016/j.msea.2008.01.028Suche in Google Scholar

[4] A.Couture: AFS Int. Cast Met. J.6(6) (1984) 9.Suche in Google Scholar

[5] W.Bonsack: ASTM Bull. (1942) 45.Suche in Google Scholar

[6] J.A.Taylor, G.B.Schaffer, D.H.StJohn: Metall. Mater. Trans.A30(6) (1999) 1643. 10.1007/s11661-999-0101-1Suche in Google Scholar

[7] C.M.Dinnis, J.A.Taylor, A.K.Dahle: Mater.Sci. Eng. A425 (2006) 286. 10.1016/j.msea.2006.03.045Suche in Google Scholar

[8] L.Bäckerud, G.Chai, J.Tamminen, Solidification Characteristics of Aluminum Alloys, vol. 2: Foundry Alloys, AFS/Skanaluminium, Des Plaines, IL, 1990, pp. 7184.Suche in Google Scholar

[9] A.N.Lakshmanan, F.H.Samuel, J.E.Gruzleski: Metall. Mater. Trans. A25(8) (1994) 1761. 10.1007/BF02668540Suche in Google Scholar

[10] O.Reiso, H.G.Overlie, N.Ryum: Metall. Trans. A21 (1990) 1689. 10.1007/BF02672585Suche in Google Scholar

[11] J.D.Robson, P.B.Prangnell: Acta Mater.49 (2001) 599. 10.1016/S1359-6454(00)00351-7Suche in Google Scholar

[12] J.D.Robson: Mater. Sci. Eng. A338 (2002) 219. 10.1016/S0921-5093(02)00061-8Suche in Google Scholar

[13] M.Drouzy, S.Jacob, M.Richard: AFS Int. Cast Met. J.5 (1980) 43.Suche in Google Scholar

[14] S.Jacob: Trans. Amer. F.108 (2000) 811.10.1016/j.clineuro.2006.04.009Suche in Google Scholar PubMed

[15] C.H.Câceres: Int. J. Cast Metal Res.10 (1998) 293. 10.1080/13640461.1998.11819245Suche in Google Scholar

[16] C.H.Câceres: Int. J. Cast Metal Res.12 (2000) 367. 10.1080/13640461.2000.11819374Suche in Google Scholar

[17] J.R.Davis (Ed.), ASM Speciality Handbook: Aluminum and Aluminum Alloys, ASM International, Materials Park, OH (1993).Suche in Google Scholar

[18] H.R.Ammar, C.Moreau, A.M.Samuel, F.H.Samuel, H.W.Doty: Mater. Sci. Eng. A489(1) (2008) 426. 10.1016/j.msea.2007.12.032Suche in Google Scholar

[19] A.L.Dons, G.Heiberg, J.Voje, J.S.Maeland, J.O.Loland, A.Prestmo: Mater. Sci. Eng. A413–414 (2005) 561.Suche in Google Scholar

[20] S.Abis, M.Massazza, P.Mengucci, G.Tiontino: Scripta. Mater.45 (2001) 685. 10.1016/S1359-6462(01)01080-6Suche in Google Scholar

[21] S.C.Wang, M.J.Starink, N.Gao: Scripta. Mater.54 (2006) 287. 10.1016/j.scriptamat.2005.09.004Suche in Google Scholar

[22] P.Ratchev, B.Verlinden, P.De Smet, P.Van Houtte: Scripta. Mater.38(8) (1998) 1195. 10.1016/S1359-6462(98)00024-4Suche in Google Scholar

[23] P.Ratchev, B.Verlinden, P.De Smet, P.Van Houtte: Acta Mater.46(10) (1998) 3523. 10.1016/S1359-6454(98)00033-0Suche in Google Scholar

[24] G.K.Sigworth, C.H.Cáceres: Trans. Amer. F.112 (2004) 115.Suche in Google Scholar

[25] N.D.Alexopoulos: Mater. Design28 (2007) 534. 10.1016/j.matdes.2005.08.006Suche in Google Scholar

[26] H.Ammar: PhD thesis, Influence of Metallurgical Parameters on the Mechanical Properties and Quality Indices of Al-Si-Cu-Mg and Al-Si-Mg Casting Alloys, University of Quebec at Chicoutimi, Canada (2010).Suche in Google Scholar

[27] S.A.Musmar: PhD thesis, In-situ Thermal Analysis Probe, McGill University, Canada (2006).Suche in Google Scholar

[28] T.Gladman: Mater. Sci. Tech.15 (1999) 30. 10.1179/026708399101505400Suche in Google Scholar

[29] F.J.Tavitas-Medrano: PhD thesis, Artificial Aging Treatments of 319-Type Aluminum Alloys, McGill University, Canada (2007).Suche in Google Scholar

Received: 2017-08-16
Accepted: 2017-11-23
Published Online: 2018-03-26
Published in Print: 2018-04-13

© 2018, Carl Hanser Verlag, München

Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111605/html
Button zum nach oben scrollen