Startseite DC-EPD of nanoceramic particles accelerated via anodic dissolution in organic media
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

DC-EPD of nanoceramic particles accelerated via anodic dissolution in organic media

  • Babak Raissi , Reza Riahifar , Maziar Sahba Yaghmaee , Fatemeh Taati-Asil , Alireza Aghaei , Sara Chatrnoor , Amir Hossein Taghadossi , Reza Irankhah und Mohamad Karimi
Veröffentlicht/Copyright: 26. März 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper presents the fabrication of nanoceramic layers by electrophoretic deposition. Suspensions containing TiO2 nanoparticles were prepared in different organic solvents, such as ethanol, methanol, acetone, and acetylacetone. During electrophoretic deposition, the color of organic media at around 200 V cm−1 began to change. This phenomenon is related to the anodic dissolution, which may assist deposition processes in some cases. Deviation from Hamaker's equation was observed upon measuring the deposited mass using different anode electrodes. Atomic absorption spectroscopy was used to measure concentrations of chemical elements liberated in the suspension due to the dissolution of anodes. These results show that anodic dissolution directly affects deposition rate. We observed this event even in the absence of powder and additives. Therefore, this is advantageous if anodic contaminants are not effective or influential.


*Correspondence address, Associate Prof. Babak Raissi, Ph. D., Battery and Sensor Research Group, Materials and Energy Research Centre, Meshkindasht Road, Karaj, 3177983634, Iran, Tel.: +982636280040-9, Fax: +982636201888, E-mail: , Web: www.fcrgroup.org

References

[1] A.A.Sadeghi, T.Ebadzadeh, B.Raissi, S.Ghashghaie: Ceram. Int.39 (2013) 74337438. 10.1016/j.ceramint.2013.02.087Suche in Google Scholar

[2] B.Raissi, E.Marzbanrad, A.R.Gardeshzadeh: J. Eur. Ceram. Soc.29 (2009) 32893291. 10.1016/j.jeurceramsoc.2009.05.028Suche in Google Scholar

[3] T.Ishihara, K.Shimose, T.Kudo, H.Nishiguchi, T.Akbay, Y.Takita: J. Am. Ceram. Soc.83 (2000) 192127. 10.1007/s11837-001-0071-2Suche in Google Scholar

[4] C.Gibbons, X.Jing, J.Silver, A.Vecht, R.Withnall: Electrochem. Solid-State Lett.2 (1999) 357358. 10.1149/1.1390836Suche in Google Scholar

[5] D.A.Davies, A.L.Lipman, J.Silver, A.C.C.Tseung: Electrochem. Solid-State Lett.4 (2001) H12H14. 10.1149/1.1359936Suche in Google Scholar

[6] S.Ghashghaie, E.Marzbanrad, B.Raissi-Dehkordi: J. Am. Ceram. Soc.94 (2011) 34313436. 10.1111/j.1551-2916.2011.04792.xSuche in Google Scholar

[7] T.Talebi, M.Haji, B.Raissi, A.Maghsoudipour: Int. J. Hydrogen Energy35 (2010) 94559459. 10.1016/j.ijhydene.2010.05.021Suche in Google Scholar

[8] I.Gonzalo-Juan, A.J.Krejci, J.H.Dickerson: Langmuir28 (2012) 52955301. 22352851 10.1021/la205124sSuche in Google Scholar PubMed

[9] B.Neinrinck, O.Van der Biest, J.Vleugels: J. Phys. Chem. B117 (2013) 15161526. 22998240 10.1021/jp306777qSuche in Google Scholar PubMed

[10] M.S.Ata, Y.Sun, X.Li, I.Zhitomirsky: Colloids Surf. A398 (2012) 916. 10.1016/j.colsurfa.2012.02.001Suche in Google Scholar

[11] S.Modi, A.Panwar, J.L.Mead, C.M.F.Barry: Langmuir29 (2013) 97029711. 23848316 10.1021/nl048103tSuche in Google Scholar PubMed

[12] S.Bonnas, H.J.Ritzhaupt-Kleissl, J.Haußelt: J. Eur. Ceram. Soc.30 (2010) 11771185. 10.1111/ijac.12434Suche in Google Scholar

[13] S.Y.Zhao, S.B.Lei, S.H.Chen, H.Y.Ma, S.Y.Wang: Colloid Polym. Sci.278 (2000) 682686. 10.1007/s003960000324Suche in Google Scholar

[14] A.Sarkar, D.Hah: J. Electron. Mater.41 (2012) 31303138. 10.1007/s11664-012-2237-9Suche in Google Scholar

[15] P.Marcus: Corrosion Mechanisms in Theory and Practice, PAFE 149, Third Edition, CRC press, Boca Raton, Florida. (2011). 10.1201/b11020Suche in Google Scholar

[16] K.Kamada, M.Mukai, Y.Matsumoto: Mater. Lett.57 (2003) 23482351. 10.1016/S0167-577XSuche in Google Scholar

[17] K.Kamada, M.Mukai, Y.Matsumoto: Electrochim. Acta49 (2004) 321327. 10.1016/j.electacta.2003.08.014Suche in Google Scholar

[18] H.Negishi, K.Yamaji, N.Sakai, T.Horita, H.Yanagishita, H.Yokokawa: J. Mater. Sci.39 (2004) 833838. 10.1023/B:JMSC.0000012911.86185.13Suche in Google Scholar

[19] G.Anne, B.Neirinck, K.Vanmeensel, O.Van der Biest, J.Vleugels: J. Am. Ceram. Soc.89 (2006) 823828. 10.1111/j.1551-2916.2005.00879.xSuche in Google Scholar

[20] H.C.Hamaker: Trans. Faraday Soc.36 (1940) 27987. 10.1039/TF9403601198,Suche in Google Scholar

[21] H.R.Sa'adati, B.Raissi, R.Riahifar, M.Sahba Yaghmaee: J. Eur. Ceram. Soc.36 (2016) 299305. 10.1016/j.jeurceramsoc.2015.09.005Suche in Google Scholar

[22] B.Stypuła, M.Starowicz, M.Hajos, E.Olejnik: Arch. Metall. Mater.56 (2011) 286292. 10.1515/amm-2015-0378,NovemberSuche in Google Scholar

[23] M.Hajos, B.Stypuła, M.Starowicz, D.Kasprzyk: Arch. Metall. Mater.56 (2011) 141146. 10.2478/v10172-011-0016-xSuche in Google Scholar

[24] G.G.F.Filho, J.Banas, F.C.M.Menandro: 15th Braz. Congr. Mech. Eng. (1999). 10.1177/0954405414530897Suche in Google Scholar

Received: 2016-09-13
Accepted: 2017-09-18
Published Online: 2018-03-26
Published in Print: 2018-04-13

© 2018, Carl Hanser Verlag, München

Heruntergeladen am 5.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111603/html
Button zum nach oben scrollen