Home Reaction fabrication and wear performance of TiCx/(Cu–A1) bonded diamond composites
Article
Licensed
Unlicensed Requires Authentication

Reaction fabrication and wear performance of TiCx/(Cu–A1) bonded diamond composites

  • Baoyan Liang , Danhui Han , Wangxi Zhang and Yanzhi Wang
Published/Copyright: March 26, 2018
Become an author with De Gruyter Brill

Abstract

Cu–TiCx-bonded diamond composites were prepared by in-situ reaction sintering of Cu, Ti3AlC2, and diamond powders. The effect of Ti3AlC2 content on the phase composition, microstructure, and grinding properties was investigated. Ti3AlC2 was decomposed to TiCx and Al. Then, Al was dissolved into the crystal lattice of Cu to form a Cu(Al) solution. A carbon-rich transition layer was formed at the interface between the diamond and the matrix. Excess Al inhibited the formation of Cu solid solution and reacted with Cu to form Cu3Al2. Diamond may be damaged to some extent by adding excess Ti3AlC2 in the raw materials, which may deteriorate the grinding performance of the composites. The grinding ratio value of copper–diamond composite was only 132, whereas that of the composites containing higher Ti3AlC2 content in the raw materials was approximately 350.


*Correspondence address, Dr. Wangxi Zhang, Materials & Chemical Engineering school, Zhongyuan University of Technology, Zhengzhou, 45000, P. R. China, Tel.: +86 371 69975740, Fax: +86 371 69975740, E-mail:

References

[1] Y.M.Liu, T.Lu, K.H.Li, N.Yan, Y.J.Zhao, Y.B.Wang: Dia. Abra. Eng.30 (2010) 1. 10.3969/j.issn.1006-852X.2010.06.001Search in Google Scholar

[2] X.K.Wang, M.X.Ma, S.K.X.Zhuang, C.C.Y.Chu: Manu. Tech. Mach. Tool.9 (2003) 52. 10.3969/j.issn.1005-2402.2003.09.021Search in Google Scholar

[3] B.Aldwell, S.Yin, K.McDonnell, D.Trimble, T.Hussain, R.Lupoi: Scr. Mater.115 (2016) 10. 10.1016/j.scriptamat.2015.12.028Search in Google Scholar

[4] Z.Q.Wang, L.Wan, X.P.Liu, W.D.Hu, H.C.Zhai, J.S.Wang: Acta Mater. Compos. Sin.29 (2012) 94. 10.13801/j.cnki.fhclxb.2012.05.033Search in Google Scholar

[5] Z.Q.Wang, L.Wan, X.P.Liu, W.D.Hu, H.C.Zhai, J.S.Wang: Mater. Rev.19 (2012) 78. 10.3969/j.issn.1005-023X.2012.04.022Search in Google Scholar

[6] X.H.Zhang, Y.H.Wang, J.B.Zang, X.Z.Cheng, X.P.Xu, J.Liu: J. Euro. Ceram. Soc.31 (2011) 1897. 10.1016/j.jeurceramsoc.2011.04.009Search in Google Scholar

[7] X.H.Zhang, Y.H.Wang, J.B.Zang: Int. J. Refrac. Met. H. Mater.29 (2011) 495. 10.1016/j.ijrmhm.2010.08.006Search in Google Scholar

[8] Y.S.Zhang, S.B.Wang, M.T.Zhang, W.Y.Wang: Min. Metall. Eng.33 (2013) 113. 10.3969/j.issn.0253-6099.2013.03.031Search in Google Scholar

[9] J.Zhang, J.Y.Wang, Y.C.Zhou: Acta Mater.55 (2007) 4381. 10.1016/j.actamat.2006.07.032Search in Google Scholar

[10] M.Q.Li, H.X.Zhai, Z.Y.Huang, X.H.Liu, Y.Zhou, S.B.Li, C.W.Li: Mater. Sci. Eng. A588 (2013) 335. 10.1016/j.msea.2013.09.017Search in Google Scholar

[11] Z.Y.Huang, J.Bonneville, H.X.Zhai, V.Gauthier-Brunet, S.Dubois: J. Alloys Compd.602 (2014) 53. 10.1016/j.jallcom.2014.02.159Search in Google Scholar

[12] X.H.Chen, H.X.Zhai, W.J.Wang, S.B.Li, Z.Y.Huang: Prog. Nat. Sci. Mater. Inter.23 (2013) 13. 10.1016/j.pnsc.2013.01.002Search in Google Scholar

[13] N.Frage, N.Froumin, M.P.Dariel: Acta Mater.50 (2002) 237. 10.1016/S1359-6454(01)00349-4Search in Google Scholar

Received: 2017-04-11
Accepted: 2017-11-03
Published Online: 2018-03-26
Published in Print: 2018-04-13

© 2018, Carl Hanser Verlag, München

Downloaded on 31.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111602/html?srsltid=AfmBOorzRA9d6vWtf_0F_QnqoTDgWKrbD5CNQLnuRchhOEhFk4v3thdm
Scroll to top button