Startseite Phase diagram, thermodynamic investigations, and modelling of systems relevant to lithium-ion batteries
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Phase diagram, thermodynamic investigations, and modelling of systems relevant to lithium-ion batteries

  • Siegfried Fürtauer , Dajian Li , David Henriques , Alexander Beutl , Hans Giel , Damian Cupid , Thorsten Markus und Hans Flandorfer
Veröffentlicht/Copyright: 30. Oktober 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This article reports on two consecutive joint projects titled “Experimental Thermodynamics and Phase Relations of New Electrode Materials for Lithium-Ion Batteries”, which were performed in the framework of the WenDeLIB 1473 priority program “Materials with new Design for Lithium Ion Batteries”. Hundreds of samples were synthesized using experimental techniques specifically developed to deal with highly reactive lithium and lithium-containing compounds to generate electrochemical, phase diagram and crystal structure data in the Cu–Li, Li–Sn, Li–Sb, Cu–Li–Sn, Cu–Li–Sb and selected oxide systems. The thermochemical and phase diagram data were subsequently used to develop self-consistent thermodynamic descriptions of several binary systems. In the present contribution, the experimental techniques, working procedures, results and their relevance to the development of new electrode materials for lithium ion batteries are discussed and summarized. The collaboration between the three groups has resulted in more than fifteen (15) published articles during the six-year funding period.


*Correspondence address, Ao. Univ. Prof. Dr. Hans Flandorfer, Department of Inorganic Chemistry – Functional Materials, University of Vienna, UZA 2, Vienna, Austria, Tel.: +43 1 4277 52911, E-mail:

References

[1] S.Fürtauer, D.Li, D.Cupid, H.Flandorfer: Intermetallics34 (2013) 142. PMid: 27087755 10.1016/j.intermet.2012.10.004Suche in Google Scholar PubMed PubMed Central

[2] D.Li, P.Franke, S.Fürtauer, D.Cupid, H.Flandorfer: Intermetallics34 (2013) 148. 10.1016/j.intermet.2012.10.010Suche in Google Scholar

[3] D.Li, S.Fürtauer, H.Flandorfer, D.M.Cupid: Calphad47 (2014) 181. 10.1016/j.calphad.2014.09.002Suche in Google Scholar

[4] S.Fürtauer, E.Tserenjav, A.Yakymovych, H.Flandorfer: J. Chem. Thermodyn.61 (2013) 105. PMid: 23814314 10.1016/j.jct.2013.01.030Suche in Google Scholar PubMed PubMed Central

[5] D.Henriques, V.Motalov, L.Bencze, S.Fürtauer, T.Markus: J. Alloys Compd.585 (2014) 299. 10.1016/j.jallcom.2013.09.010Suche in Google Scholar

[6] L.Bencze, D.Henriques, V.Motalov, T.Markus: J. Alloys Compd.607 (2014) 183. 10.1016/j.jallcom.2014.03.166Suche in Google Scholar

[7] H.Giel, D.Henriques, T.Markus: J. Electrochem. Soc.164 (2017). 10.1149/2.0031706jesSuche in Google Scholar

[8] A.Beutl, S.Fürtauer, H.Flandorfer: Thermochim. Acta653 (2017). 10.1016/j.tca.2017.03.025Suche in Google Scholar

[9] D.Li, S.Fürtauer, H.Flandorfer, D.M.Cupid: Calphad53 (2016) 105. 10.1016/j.calphad.2016.04.003Suche in Google Scholar

[10] S.Fürtauer, H.Flandorfer: J. Alloys Compd.682 (2016) 713. 10.1016/j.jallcom.2016.04.247Suche in Google Scholar

[11] S.Fürtauer, H.Flandorfer: PLoS ONE11 (2016). 10.1371/journal.pone.0165058Suche in Google Scholar PubMed PubMed Central

[12] S.Fürtauer, H.S.Effenberger, H.Flandorfer: Z. Kristallogr.231 (2016) 79. 10.1515/zkri-2015-1884Suche in Google Scholar

[13] S.Fürtauer, H.S.Effenberger, H.Flandorfer: Z. Kristallogr.230 (2015) 97. 10.1515/zkri-2014-1778Suche in Google Scholar

[14] S.Fürtauer, H.S.Effenberger, H.Flandorfer: J. Solid State Chem.220 (2014) 198. PMid: 25473128 10.1016/j.jssc.2014.08.006Suche in Google Scholar PubMed PubMed Central

[15] D.Henriques, V.Motalov, L.Bencze, S.Fürtauer, H.Flandorfer, T.Markus: J. Alloys Compd.687 (2016) 306. 10.1016/j.jallcom.2016.06.091Suche in Google Scholar

[16] A.Beutl, D.Cupid, H.Flandorfer: J. Alloys Compd.695 (2017). 10.1016/j.jallcom.2016.10.230Suche in Google Scholar

[17] D.Li, A.Beutl, H.Flandorfer, D.M.Cupid: J. Alloys Compd.701 (2017). 10.1016/j.jallcom.2016.12.399Suche in Google Scholar

[18] H.Pauly, A.Weiss, H.Witte: Z. Metallkd.59 (1968) 47.Suche in Google Scholar

[19] H.U.Schuster, D.Thiedemann, H.Schönemann: Z. Anorg. Allg. Chem.370 (1969) 160. 10.1002/zaac.19693700308Suche in Google Scholar

[20] P.I.Kripyakevich, G.I.Oleksiv: Dopov. Akad. Nauk Ukr. RSR A (1970) 63.Suche in Google Scholar

[21] H.U.Schuster: Naturwissenschaften53 (1966) 360. PMid: 5993455 10.1007/BF00621873Suche in Google Scholar PubMed

[22] D.Henriques, V.Motalov, L.Bencze, T.Markus: ECS Trans.46 (2013). 10.1149/04601.0303ecstSuche in Google Scholar

[23] P.Baradel, A.Vermande, I.Ansara, P.Desre: Rev. Int. Hautes Temp.8 (1971) 201.Suche in Google Scholar

[24] M.W.Barsoum, H.L.Tuller: Metall. Trans. A19 (1988) 637. 10.1007/Bf02649277Suche in Google Scholar

[25] W.Gąsior, Z.Moser: Arch. Metall.44 (1999) 83.Suche in Google Scholar

[26] Z.Moser, W.Gąsior, F.Sommer, G.Schwitzgebel, B.Predel: Metall. Trans. B17 (1986). 10.1007/BF02657142Suche in Google Scholar

[27] A.T.Dinsdale: Calphad15 (1991) 317. updated version 5.0 (2009). 10.1016/0364–5916(91)90030-N;Suche in Google Scholar

[28] B.P.Alblas, W.Vanderlugt, J.Dijkstra, C.Vandijk: J. Phys. F: Met. Phys.14 (1984) 1995. 10.1088/0305-4608/14/9/006Suche in Google Scholar

[29] C.J.Wen, R.A.Huggins: J. Electrochem. Soc.128 (1981) 1181. 10.1149/1.2127590Suche in Google Scholar

[30] I.A.Courtney, J.S.Tse: Phys. Rev. B58 (1998) 15583. 10.1103/PhysRevB.58.15583Suche in Google Scholar

[31] J.Wang, I.D.Raistrick, R.A.Huggins: J. Electrochem. Soc.133 (1986) 457. 10.1149/1.2108601Suche in Google Scholar

[32] W.Gąsior, Z.Moser, W.Zakulski: J. Non-Cryst. Solids205–207 (1996) 379. 10.1016/S0022-3093(96)00446-2Suche in Google Scholar

[33] W.Gąsior, B.Onderka, Z.Moser, A.Dębski, T.Gancarz: Calphad33 (2009) 215. 10.1016/j.calphad.2008.10.006Suche in Google Scholar

[34] M.V.Mikhailovskaya, V.S.Sudavtseva: Ukr. Khim. Zh+55 (1989) 1106.Suche in Google Scholar

[35] F.Winter, S.Dupke, H.Eckert, U.C.Rodewald, R.Pöttgen: Z. Anorg. Allg. Chem.639 (2013) 2790. 10.1002/zaac.201300220Suche in Google Scholar

[36] Y.M.Muggianu, M.Gambino, J.P.Bros: J. Chim. Phys. Pcb72 (1975).10.1051/jcp/1975720083Suche in Google Scholar

[37] H.Ipser, A.Mikula, I.Katayama: Calphad34 (2010). 10.1016/j.calphad.2010.05.001Suche in Google Scholar

[38] D.White, K.S.Seshadri, D.F.Dever, M.J.Linevsky, D.E.Mann: J. Chem. Phys.39 (1963) 2463. 10.1063/1.1734049Suche in Google Scholar

[39] P.Gotcu-Freis, D.M.Cupid, M.Rohde, H.J.Seifert: J. Chem. Thermodyn.84 (2015) 118. 10.1016/j.jct.2014.12.007Suche in Google Scholar

[40] K.K.Chang, B.Hallstedt, D.Music, J.Fischer, C.Ziebert, S.Ulrich, H.J.Seifert: Calphad41 (2013) 6. 10.1016/j.calphad.2013.01.001Suche in Google Scholar

Received: 2016-10-31
Accepted: 2017-08-15
Published Online: 2017-10-30
Published in Print: 2017-11-10

© 2017, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Priority Programme 1473 (SPP1473) funded by the German Research Foundation: “Materials with new design for improved lithium ion batteries – WeNDeLIB”
  5. Original Contributions
  6. Enthalpies of formation of layered LiNixMnxCo1–2xO2 (0 ≤ x ≤ 0.5) compounds as lithium ion battery cathode materials
  7. Dependence of the constitution, microstructure and electrochemical behaviour of magnetron sputtered Li–Ni–Mn–Co–O thin film cathodes for lithium-ion batteries on the working gas pressure and annealing conditions
  8. Phase diagram, thermodynamic investigations, and modelling of systems relevant to lithium-ion batteries
  9. Thin-film calorimetry: In-situ characterization of materials for lithium-ion batteries
  10. Si- and Sn-containing SiOCN-based nanocomposites as anode materials for lithium ion batteries: synthesis, thermodynamic characterization and modeling
  11. Phase formation in alloy-type anode materials in the quaternary system Li–Sn–Si–C
  12. Thermodynamic characterization of lithium monosilicide (LiSi) by means of calorimetry and DFT-calculations
  13. Thermochemical stability of Li–Cu–O ternary compounds stable at room temperature analyzed by experimental and theoretical methods
  14. Coexistence of conversion and intercalation mechanisms in lithium ion batteries: Consequences for microstructure and interaction between the active material and electrolyte
  15. Ion transport and phase transformation in thin film intercalation electrodes
  16. Electrochemical lithiation of silicon electrodes: neutron reflectometry and secondary ion mass spectrometry investigations
  17. Interlaboratory study of the heat capacity of LiNi1/3Mn1/3Co1/3O2 (NMC111) with layered structure
  18. DGM News
  19. DGM News
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111561/html
Button zum nach oben scrollen