Electrochemical lithiation of silicon electrodes: neutron reflectometry and secondary ion mass spectrometry investigations
-
Bujar Jerliu
Abstract
In-situ neutron reflectometry and ex-situ secondary ion mass spectrometry in combination with electrochemical methods were used to study the lithiation of amorphous silicon electrodes. For that purpose specially designed closed three-electrode electrochemical cells with thin silicon films as the working electrode and lithium as counter and reference electrodes were used. The neutron reflectometry results obtained in-situ during galvanostatic cycling show that the incorporation, redistribution and removal of Li in amorphous silicon during a lithiation cycle can be monitored. It was possible to measure the volume modification during lithiation, which is found to be rather independent of cycle number, current density and film thickness and in good agreement with first-principles calculations as given in literature. Indications for an inhomogeneous lithiation mechanism were found by secondary ion mass spectrometry measurements. Lithium tracer diffusion experiments indicate that the diffusivities inside the lithiated region (D > 10−15 m2 s−1) are considerably higher than in pure amorphous silicon as known from literature. This suggests a kinetics based explanation for the occurrence of an inhomogeneous lithiation mechanism.
References
[1] K.E.Aifantis, S.A.Hackney, R.V.Kumar: High energy density lithium batteries, Wiley-VCH, Weinheim (2010). 10.1002/9783527630011Suche in Google Scholar
[2] F.T.Wagner, B.Lakshmanan, M.F.Mathias: J. Phys. Chem. Lett.1 (2010) 2204. 10.1021/jz100553mSuche in Google Scholar
[3] M.Yoshio, R.J.Brodd, A.Kozawa: Lithium-ion batteries: Science and technologies, Springer, New York, NY (2009). 10.1007/978-0-387-34445-4Suche in Google Scholar
[4] G.Pistoia: Lithium-ion batteries: Advances and applications, Elsevier, Amsterdam (2014). 10.1016/B978-0-444-59513-3.05001-9Suche in Google Scholar
[5] Y.Wu: Lithium-ion batteries: Fundamentals and applications, CRC Press, Taylor & Francis Group, Boca Raton (2015).10.1201/b18427Suche in Google Scholar
[6] M.T.McDowell, S.W.Lee, W.D.Nix, Y.Cui: Adv. Mater.25 (2013) 4966. PMid: 24038172 10.1002/adma.201301795Suche in Google Scholar PubMed
[7] C.K.Chan, H.Peng, G.Liu, K.McIlwrath, X.F.Zhang, R.A.Huggins, Y.Cui: Nature Nanotech.3 (2008) 31. PMid: 18654447 10.1038/nnano.2007.411Suche in Google Scholar PubMed
[8] R.Miyazaki, N.Ohta, T.Ohnishi, I.Sakaguchi, K.Takada: J. Power Sources272 (2014) 541. 10.1016/j.jpowsour.2014.08.109Suche in Google Scholar
[9] M.N.Obrovac, V.L.Chevrier: Chem. Reviews114 (2014) 11444. PMid: 25399614 10.1021/cr500207gSuche in Google Scholar PubMed
[10] V.P.Phan, B.Pecquenard, F.Le Cras: Adv. Funct. Mater.22 (2012) 2580. 10.1002/adfm.201200104Suche in Google Scholar
[11] X.Su, Q.Wu, J.Li, X.Xiao, A.Lott, W.Lu, B.W.Sheldon, J.Wu: Adv. Energy Mater.4 (2014) 1300882. 10.1002/aenm.201300882Suche in Google Scholar
[12] J.R.Szczech, S.Jin: Energy Environ. Sci.4 (2011) 56. 10.1039/C0EE00281JSuche in Google Scholar
[13] D.Larcher, S.Beattie, M.Morcrette, K.Edström, J.-C.Jumas, J.-M.Tarascon: J. Mater. Chem.17 (2007) 3759. 10.1039/b705421cSuche in Google Scholar
[14] M.N.Obrovac, L.Christensen: Electrochem. Solid-State Lett.7 (2004) A93. 10.1039/b705421cSuche in Google Scholar
[15] S.Huang, T.Zhu: J. Power Sources196 (2011) 3664. 10.1016/j.jpowsour.2010.11.155Suche in Google Scholar
[16] B.Jerliu, L.Dorrer, E.Huger, G.Borchardt, R.Steitz, U.Geckle, V.Oberst, M.Bruns, O.Schneider, H.Schmidt: Phys. Chem. Chem. Phys.15 (2013) 7777. PMid: 23598350 10.1039/c3cp44438dSuche in Google Scholar PubMed
[17] L.G.Parratt: Phys. Rev.95 (1954) 359. 10.1103/PhysRev.95.359Suche in Google Scholar
[18] C.Braun, Parratt32 – The reflectivity tool: The manual, version 1.6.0, HMIBerlin (1997–2002).Suche in Google Scholar
[19] E.Pollak, G.Salitra, V.Baranchugov, D.Aurbach: J. Phys. Chem. C111 (2007) 11437. PMid: 17850067 10.1021/jp0729563Suche in Google Scholar
[20] T.L.Kulova, A.M.Skundin, Y.Pleskov, E.I.Terukov, O.I. Kon'kov: J. Electroanal. Chem.600 (2007) 217. 10.1016/j.jelechem.2006.07.002Suche in Google Scholar
[21] L.Chen, K.Wang, X.Xie, J.Xie: 13th International Meeting on Lithium Batteries174 (2007) 538. 10.1016/j.jpowsour.2007.06.149Suche in Google Scholar
[22] J.Bisquert, G.Garcia-Belmonte, P.Bueno, E.Longo, L.Bulhões, J. Electroanal. Chem.452 (1998) 229. 10.1016/S0022-0728(98)00115-6Suche in Google Scholar
[23] J.-P.Diard, C.Montella: J. Electroanal. Chem.557 (2003) 19. 10.1016/S0022-0728(03)00346-2Suche in Google Scholar
[24] V.L.Chevrier, J.R.Dahn: J. Electrochem. Soc.156 (2009) A454. 10.1149/1.3111037Suche in Google Scholar
[25] B.Jerliu, E.Hüger, L.Dörrer, B.-K.Seidlhofer, R.Steitz, V.Oberst, U.Geckle, M.Bruns, H.Schmidt: J. Phys. Chem. C118 (2014) 9395. 10.1021/jp502261tSuche in Google Scholar
[26] M.Pharr, K.Zhao, X.Wang, Z.Suo, J.J.Vlassak: Nano Lett.12 (2012) 5039. PMid: 22889293 10.1016/j.elecom.2006.11.014Suche in Google Scholar
[27] V.Baranchugov, E.Markevich, E.Pollak, G.Salitra, D.Aurbach: Electrochem. Commun.9 (2007) 796. 10.1016/j.elecom.2006.11.014Suche in Google Scholar
[28] H.Guo, H.Zhao, C.Yin, W.Qiu, Mater. Sci. Engin. B131 (2006) 173. 10.1016/j.mseb.2006.04.008Suche in Google Scholar
[29] H.Xia, S.Tang, L.Lu: Mater. Res. Bull.42 (2007) 1301. 10.1016/j.materresbull.2006.10.007Suche in Google Scholar
[30] M.J.Chon, V.A.Sethuraman, A.McCormick, V.Srinivasan, P.R.Guduru: Phys. Rev. Lett.107 (2011) 45503. PMid: 21867019 10.1103/PhysRevLett.107.045503Suche in Google Scholar
[31] P.Limthongkul, Y.-I.Jang, N.J.Dudney, Y.-M.Chiang: J. Power Sources119–121 (2003) 604. 10.1016/S0378-7753(03)00303-3Suche in Google Scholar
[32] M.T.McDowell, I.Ryu, S.W.Lee, C.Wang, W.D.Nix, Y.Cui: Adv. Mater.24 (2012) 6034. PMid: 22945804 10.1002/adma.201202744Suche in Google Scholar
[33] E.Hüger, B.Jerliu, L.Dörrer, M.Bruns, G.Borchardt, H.Schmidt: Z. Phys. Chem.229 (2015). 10.1515/zpch-2014-0650Suche in Google Scholar
[34] M.T.McDowell, S.W.Lee, J.T.Harris, B.A.Korgel, C.Wang, W.D.Nix, Y.Cui: Nano Lett.13 (2013) 758. PMid: 23323680 10.1021/nl3044508Suche in Google Scholar
[35] W.Beyer, U.Zastrow: J. Non-Cryst. Solids164–166 (1993) 289. 10.1016/0022-3093(93)90547-BSuche in Google Scholar
[36] J.Xie, N.Imanishi, T.Zhang, A.Hirano, Y.Takeda, O.Yamamoto: Mater. Chem. Phys.120 (2010) 421. 10.1016/j.matchemphys.2009.11.031Suche in Google Scholar
[37] X.Xiao, P.Liu, M.W.Verbrugge, H.Haftbaradaran, H.Gao: J.Power Sources196 (2011) 1409. 10.1016/j.jpowsour.2010.08.058Suche in Google Scholar
[38] J.Li, X.Xiao, F.Yang, M.W.Verbrugge, Y.-T.Cheng: J. Phys. Chem. C116 (2012) 1472. 10.1021/jp207919qSuche in Google Scholar
[39] Y.Zhu, C.Wang: J. Phys. Chem. C114 (2010) 2830. 10.1021/jp9113333Suche in Google Scholar
[40] X.H.Liu, J.W.Wang, S.Huang, F.Fan, X.Huang, Y.Liu, S.Krylyuk, J.Yoo, S.A.Dayeh, A.V.Davydov, S.X.Mao, S.T.Picraux, S.Zhang, J.Li, T.Zhu, J.Y.Huang: Nat. Nature Nanotechnol.7 (2012) 749. PMid: 23042490 10.1038/nnano.2012.170Suche in Google Scholar PubMed
© 2017, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Priority Programme 1473 (SPP1473) funded by the German Research Foundation: “Materials with new design for improved lithium ion batteries – WeNDeLIB”
- Original Contributions
- Enthalpies of formation of layered LiNixMnxCo1–2xO2 (0 ≤ x ≤ 0.5) compounds as lithium ion battery cathode materials
- Dependence of the constitution, microstructure and electrochemical behaviour of magnetron sputtered Li–Ni–Mn–Co–O thin film cathodes for lithium-ion batteries on the working gas pressure and annealing conditions
- Phase diagram, thermodynamic investigations, and modelling of systems relevant to lithium-ion batteries
- Thin-film calorimetry: In-situ characterization of materials for lithium-ion batteries
- Si- and Sn-containing SiOCN-based nanocomposites as anode materials for lithium ion batteries: synthesis, thermodynamic characterization and modeling
- Phase formation in alloy-type anode materials in the quaternary system Li–Sn–Si–C
- Thermodynamic characterization of lithium monosilicide (LiSi) by means of calorimetry and DFT-calculations
- Thermochemical stability of Li–Cu–O ternary compounds stable at room temperature analyzed by experimental and theoretical methods
- Coexistence of conversion and intercalation mechanisms in lithium ion batteries: Consequences for microstructure and interaction between the active material and electrolyte
- Ion transport and phase transformation in thin film intercalation electrodes
- Electrochemical lithiation of silicon electrodes: neutron reflectometry and secondary ion mass spectrometry investigations
- Interlaboratory study of the heat capacity of LiNi1/3Mn1/3Co1/3O2 (NMC111) with layered structure
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Priority Programme 1473 (SPP1473) funded by the German Research Foundation: “Materials with new design for improved lithium ion batteries – WeNDeLIB”
- Original Contributions
- Enthalpies of formation of layered LiNixMnxCo1–2xO2 (0 ≤ x ≤ 0.5) compounds as lithium ion battery cathode materials
- Dependence of the constitution, microstructure and electrochemical behaviour of magnetron sputtered Li–Ni–Mn–Co–O thin film cathodes for lithium-ion batteries on the working gas pressure and annealing conditions
- Phase diagram, thermodynamic investigations, and modelling of systems relevant to lithium-ion batteries
- Thin-film calorimetry: In-situ characterization of materials for lithium-ion batteries
- Si- and Sn-containing SiOCN-based nanocomposites as anode materials for lithium ion batteries: synthesis, thermodynamic characterization and modeling
- Phase formation in alloy-type anode materials in the quaternary system Li–Sn–Si–C
- Thermodynamic characterization of lithium monosilicide (LiSi) by means of calorimetry and DFT-calculations
- Thermochemical stability of Li–Cu–O ternary compounds stable at room temperature analyzed by experimental and theoretical methods
- Coexistence of conversion and intercalation mechanisms in lithium ion batteries: Consequences for microstructure and interaction between the active material and electrolyte
- Ion transport and phase transformation in thin film intercalation electrodes
- Electrochemical lithiation of silicon electrodes: neutron reflectometry and secondary ion mass spectrometry investigations
- Interlaboratory study of the heat capacity of LiNi1/3Mn1/3Co1/3O2 (NMC111) with layered structure
- DGM News
- DGM News