Dependence of the constitution, microstructure and electrochemical behaviour of magnetron sputtered Li–Ni–Mn–Co–O thin film cathodes for lithium-ion batteries on the working gas pressure and annealing conditions
-
Marc Strafela
Abstract
Li(Ni1/3Mn1/3Co1/3)O2 as a cathode material for lithium ion batteries shows good thermal stability, high reversible capacity (290 mAh g−1), good rate capability and better results in terms of environmental friendliness. In this paper thin film cathodes in the material system Li–Ni–Mn–Co–O were deposited onto silicon and stainless steel substrates, by non-reactive r.f. magnetron sputtering from a ceramic Li1.18(Ni0.39Mn0.19Co0.35)O1.97 target at various argon working gas pressures between 0.2 Pa and 20 Pa. A comprehensive study on the composition and microstructure was carried out. The results showed that the elemental composition varies depending on argon working gas pressure. The elemental composition was determined by inductively coupled plasma optical emission spectroscopy in combination with carrier gas hot extraction. The films showed different grain orientations depending argon working gas pressures. The degree of cation order in the lattice structure of the films deposited at 0.5 Pa and 7 Pa argon working gas pressure, was increased by annealing in an argon/oxygen atmosphere at different pressures for one hour. The microstructure of the films varies with annealing gas pressure and is characterized using X-ray diffraction and unpolarized micro-Raman spectroscopy at room temperature. Electrochemical characterization of as-deposited and annealed films was carried out by galvanostatic cycling in Li–Ni–Mn–Co–O half-cells against metallic lithium. Correlations between process parameters, constitution, microstructure and electrochemical behaviour are discussed in detail.
References
[1] T.Ohzuku, Y.Makimura: Chem Lett (2001) 642. 10.1246/cl.2001.642Suche in Google Scholar
[2] Z.Lu, R.A.Donaberger, J.R.Dahn: Chem Mater12 (2000) 3583. 10.1021/cm000359mSuche in Google Scholar
[3] P.J.Bouwman, B.A.Boukamp, H.J.M.Bouwmeester, H.J.Wondergem, P.H.L.Notten: J Electrochem Soc148 (2001) A311. 10.1149/1.1353570Suche in Google Scholar
[4] K.Shaju, G.Subba Rao, B.Chowdari: Electrochim Acta48 (2002) 145. 10.1016/S0013-4686(02)00593-5Suche in Google Scholar
[5] J.Deng, L.Xi, L.Wang, Z.Wang, C.Y.Chung, X.Han, H.Zhou: J. Power Sources217 (2012) 491. 10.1016/j.jpowsour.2012.06.006Suche in Google Scholar
[6] R.D.Shannon: Acta Crystallogr A32 (1976) 751. 10.1107/S0567739476001551Suche in Google Scholar
[7] X.Zhang, W.J.Jiang, A.Mauger, Qilu, F.Gendron, C.M.Julien: J. Power Sources195 (2010) 1292. 10.1016/j.jpowsour.2009.09.029Suche in Google Scholar
[8] J.Li, R.Klöpsch, M.C.Stan, S.Nowak, M.Kunze, M.Winter, S.Passerini: J J. Power Sources196 (2011) 4821. 10.1016/j.jpowsour.2011.01.006Suche in Google Scholar
[9] J.-J.Ding, Q.Sun, Z.-W.Fu: Electrochem Solid St13 (2010) A105. 10.1149/1.3432254Suche in Google Scholar
[10] J.Xie, N.Imanishi, T.Zhang, A.Hirano, Y.Takeda, O.Yamamoto: J. Power Sources195 (2010) 5780. 10.1016/j.jpowsour.2010.03.040Suche in Google Scholar
[11] H.Yim, W.Y.Kong, S.-J.Yoon, Y.C.Kim, J.-W.Choi: J. Nanosci Nanotechno13 (2013) 3459. 10.1166/jnn.2013.7273Suche in Google Scholar PubMed
[12] H.Yim, W.Yeon Kong, Y.Chul Kim, S.-J.Yoon, J.-W.Choi: J. Solid State Chem196 (2012) 288. 10.1016/j.jssc.2012.06.006Suche in Google Scholar
[13] G.Tan, F.Wu, J.Lu, R.Chen, L.Li, K.Amine: Nanoscale6 (2014) 10611. 10.1039/c4nr02949fSuche in Google Scholar PubMed
[14] Y.Chung, H.-y.Park, S.-h.Oh, D.Y.Yoon, S.-w.Jin, D.-y.Jang, J.M.Ko, W.I.Cho, S.-R.Lee: J Electroceram31 (2013) 316. 10.1007/s10832-013-9845-5Suche in Google Scholar
[15] G.Tan, F.Wu, J.Lu, R.Chen, L.Li, K.Amine: Nanoscale6 (2014) 10611. 10.1039/c4nr02949fSuche in Google Scholar
[16] G.Cherkashinin, M.Motzko, N.Schulz, T.Späth, W.Jaegermann: Chem Mater27 (2015) 2875. 10.1021/cm5047534Suche in Google Scholar
[17] J.Feng, B.Yan, M.O.Lai, L.Li: Energy Technol-GER2 (2014) 397. 10.1002/ente.201300173Suche in Google Scholar
[18] C.Jacob, T.Lynch, A.Chen, J.Jian, H.Wang: J. Power Sources241 (2013) 410. 10.1016/j.jpowsour.2013.04.140Suche in Google Scholar
[19] J.Deng, C.Y.Chung, X.Han, Y.Zhong, Z.Wang, H.Zhou: Int J Electrochem SC2013 (2013) 1770.Suche in Google Scholar
[20] C.Ziebert, B.Ketterer, M.Rinke, C.Adelhelm, S.Ulrich, K.-H.Zum Gahr, S.Indris, T.Schimmel: Surf. Coat. Technol205 (2010) 1589. 10.1016/j.surfcoat.2010.07.110Suche in Google Scholar
[21] G.Kresse, J.Furthmüller: Phys. Rev. B: Condens. Matter54 (1996) 11169. 10.1103/PhysRevB.54.11169Suche in Google Scholar PubMed
[22] G.Kresse, D.Joubert: PHYS. Rev. B: Condens. Matter59 (1999) 1758. 10.1103/PhysRevB.59.1758Suche in Google Scholar
[23] P.E.Blöchl: PHYS. Rev. B: Condens. Matter50 (1994) 17953. 10.1103/PhysRevB.50.17953Suche in Google Scholar
[24] H.J.Monkhorst, J.D.Pack: Phys. Rev. B: Condens. Matter13 (1976) 5188. 10.1103/PhysRevB.13.5188Suche in Google Scholar
[25] K.Chang, B.Hallstedt, D.Music: Chem. Mater.24 (2012) 97. 10.1021/cm201964rSuche in Google Scholar
[26] K.Chang, B.Hallstedt, D.Music: Calphad37 (2012) 100. 10.1016/j.calphad.2012.02.006Suche in Google Scholar
[27] Y.Koyama, I.Tanaka, H.Adachi, Y.Makimura, T.Ohzuku: J. Power Sources119–121 (2003) 644. 10.1016/S0378-7753(03)00194-0Suche in Google Scholar
[28] R.P.Stein, V.Malakhof, H.P.Smith: Jpn. J. Appl. Phys36 (1965) 1504. 10.1063/1.1714352Suche in Google Scholar
[29] G.K.Wehner, D.Rosenberg: Jpn. J. Appl. Phys31 (1960) 177. 10.1063/1.1735395Suche in Google Scholar
[30] C.Eisenmenger-Sittner: J. Vac. Sci. Technol., A12 (1994) 536. 10.1116/1.579165Suche in Google Scholar
[31] C.S.Nimisha, G.Mohan Rao: Jpn. J. Appl. Phys109 (2011) 114910. 10.1063/1.3597829Suche in Google Scholar
[32] Y.M.Todorov, K.Numata: Electrochim. Acta50 (2004) 495. 10.1016/j.electacta.2004.05.050Suche in Google Scholar
[33] J.Choi, A.Manthiram: Electrochem. Solid-State Lett.7 (2004) A365. 10.1149/1.1792271Suche in Google Scholar
[34] A.Hashem, A.E.Abdel-Ghany, A.E.Eid, J.Trottier, K.Zaghib, A.Mauger, C.M.Julien: J. Power Sources196 (2011) 8632. 10.1016/j.jpowsour.2011.06.039Suche in Google Scholar
[35] C.Julien: Solid State Ionics136–137 (2000) 887. 10.1016/S0167-2738(00)00503-8Suche in Google Scholar
[36] R.Huang, T.Hitosugi, C.A.Fisher, Y.H.Ikuhara, H.Moriwake, H.Oki, Y.Ikuhara: Mater. Chem. Phys.133 (2012) 1101. 10.1016/j.matchemphys.2012.02.022Suche in Google Scholar
[37] J.Xie, N.Imanishi, A.Hirano, M.Matsumura, Y.Takeda, O.Yamamoto: Solid State Ionics178 (2007) 1218. 10.1016/j.ssi.2007.06.007Suche in Google Scholar
[38] J.Xie, N.Imanishi, T.MATSUMURA, A.Hirano, Y.Takeda, O.Yamamoto: Solid State Ionics179 (2008) 362. 10.1016/j.ssi.2008.02.051Suche in Google Scholar
[39] C.-L.Liao, Y.-H.Lee, K.-Z.Fung: J. Alloys Compd.436 (2007) 303. 10.1016/j.jallcom.2006.07.033Suche in Google Scholar
[40] C.-L.Liao, K.-Z.Fung: J. Power Sources128 (2004) 263. 10.1016/j.jpowsour.2003.09.065Suche in Google Scholar
[41] Y.Koyama, H.Arai, I.Tanaka, Y.Uchimoto, Z.Ogumi: J. Power Sources244 (2013) 592. 10.1016/j.jpowsour.2012.12.127Suche in Google Scholar
[42] J.Liu, B.Reeja-Jayan, A.Manthiram: J. Phys. Chem. C114 (2010) 9528. 10.1021/jp102050sSuche in Google Scholar
© 2017, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Priority Programme 1473 (SPP1473) funded by the German Research Foundation: “Materials with new design for improved lithium ion batteries – WeNDeLIB”
- Original Contributions
- Enthalpies of formation of layered LiNixMnxCo1–2xO2 (0 ≤ x ≤ 0.5) compounds as lithium ion battery cathode materials
- Dependence of the constitution, microstructure and electrochemical behaviour of magnetron sputtered Li–Ni–Mn–Co–O thin film cathodes for lithium-ion batteries on the working gas pressure and annealing conditions
- Phase diagram, thermodynamic investigations, and modelling of systems relevant to lithium-ion batteries
- Thin-film calorimetry: In-situ characterization of materials for lithium-ion batteries
- Si- and Sn-containing SiOCN-based nanocomposites as anode materials for lithium ion batteries: synthesis, thermodynamic characterization and modeling
- Phase formation in alloy-type anode materials in the quaternary system Li–Sn–Si–C
- Thermodynamic characterization of lithium monosilicide (LiSi) by means of calorimetry and DFT-calculations
- Thermochemical stability of Li–Cu–O ternary compounds stable at room temperature analyzed by experimental and theoretical methods
- Coexistence of conversion and intercalation mechanisms in lithium ion batteries: Consequences for microstructure and interaction between the active material and electrolyte
- Ion transport and phase transformation in thin film intercalation electrodes
- Electrochemical lithiation of silicon electrodes: neutron reflectometry and secondary ion mass spectrometry investigations
- Interlaboratory study of the heat capacity of LiNi1/3Mn1/3Co1/3O2 (NMC111) with layered structure
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Priority Programme 1473 (SPP1473) funded by the German Research Foundation: “Materials with new design for improved lithium ion batteries – WeNDeLIB”
- Original Contributions
- Enthalpies of formation of layered LiNixMnxCo1–2xO2 (0 ≤ x ≤ 0.5) compounds as lithium ion battery cathode materials
- Dependence of the constitution, microstructure and electrochemical behaviour of magnetron sputtered Li–Ni–Mn–Co–O thin film cathodes for lithium-ion batteries on the working gas pressure and annealing conditions
- Phase diagram, thermodynamic investigations, and modelling of systems relevant to lithium-ion batteries
- Thin-film calorimetry: In-situ characterization of materials for lithium-ion batteries
- Si- and Sn-containing SiOCN-based nanocomposites as anode materials for lithium ion batteries: synthesis, thermodynamic characterization and modeling
- Phase formation in alloy-type anode materials in the quaternary system Li–Sn–Si–C
- Thermodynamic characterization of lithium monosilicide (LiSi) by means of calorimetry and DFT-calculations
- Thermochemical stability of Li–Cu–O ternary compounds stable at room temperature analyzed by experimental and theoretical methods
- Coexistence of conversion and intercalation mechanisms in lithium ion batteries: Consequences for microstructure and interaction between the active material and electrolyte
- Ion transport and phase transformation in thin film intercalation electrodes
- Electrochemical lithiation of silicon electrodes: neutron reflectometry and secondary ion mass spectrometry investigations
- Interlaboratory study of the heat capacity of LiNi1/3Mn1/3Co1/3O2 (NMC111) with layered structure
- DGM News
- DGM News