Ion transport and phase transformation in thin film intercalation electrodes
-
Fabian Wunde
Abstract
Thin film battery electrodes of the olivine structure LiFePO4 and the spinel phase LiMn2O4 are deposited through ion-beam sputtering. The intercalation kinetics is studied by cyclo-voltammetry using variation of the cycling rate over 4 to 5 orders of magnitude. The well-defined layer geometry allows a detailed quantitative analysis. It is shown that LiFePO4 clearly undergoes phase separation during intercalation, although the material is nano-confined and very high charging rates are applied. We present a modified Randles–Sevcik evaluation adapted to phase-separating systems. Both the charging current and the overpotential depend on the film thickness in a systematic way. The analysis yields evidence that the grain boundaries are important short circuit paths for fast transport. They increase the electrochemical active area with increasing layer thickness. Evidence is obtained that the grain boundaries in LiFePO4 have the character of an ion-conductor of vanishing electronic conductivity.
References
[1] T.Stockhoff, T.Gallasch, F.Berkemeier, G.Schmitz: Thin solid films520 (2012) 3668–3674. 10.1016/j.tsf.2011.12.065Suche in Google Scholar
[2] F.Wunde, F.Berkemeier, G.Schmitz: J. Power Sources215 (2012) 109–115. 10.1016/j.jpowsour.2012.04.102Suche in Google Scholar
[3] M.Köhler, F.Berkemeier, T.Gallasch, G.Schmitz: J. Power Sources236 (2013) 61–67. 10.1016/j.jpowsour.2013.02.043Suche in Google Scholar
[4] S.Nowak, F.Berkemeier, G.Schmitz: J. Power Sources275 (2015). 144–150. 10.1016/j.jpowsour.2014.10.202Suche in Google Scholar
[5] F.Berkemeier, T.Stockhoff, G.Schmitz: Acta Mater.80 (2014), 132–140. 10.1016/j.actamat.2014.07.044Suche in Google Scholar
[6] M.Muñoz-Castro, F.Berkemeier, G.Schmitz: Buchheit, H.-D. Wiemhöfer: J. Appl. Phys.120 (2016) 135106. 10.1063/1.4964254Suche in Google Scholar
[7] J.Terwort, F.Berkemeier, G.Schmitz: J. Power Sources336 (2016) 172–178. 10.1016/j.jpowsour.2016.10.073Suche in Google Scholar
[8] S.Loos, D.Grunerl, M.Abdel-Hafiez, J.Seidel, R.Hüttl, A.Wolter, K.Bohmhammel, F.Mertens: J. Chem. Therm.85 (2015) 77–85. 10.1016/j.jct.2015.01.007Suche in Google Scholar
[9] D.M.Cupid, T.Lehmann, T.Bergfeldt, H.Berndt, H.J.Seifert: J. Mater. Sci.48 (2013) 3395–3403. 10.1007/s10853-012-7126-3Suche in Google Scholar
[10] D.M.Cupid, D.Li, C.Gebert, A.Reif, H.Flandorfer, H.J.Seifert: J. Ceram. Soc. Jap.124 (2016), pp. 1072–1082. 10.2109/jcersj2.16116Suche in Google Scholar
[11] D.M.Cupid, A.Reif, H.J.Seifert: Thermochim. Acta599 (2015) 35–41. 10.1016/j.tca.2014.11.003Suche in Google Scholar
[12] J.Fischer, D.Music, T.Bergfeldt, C.Ziebert, S.Ulrich, H.J.Seifert: Thin Solid Films572 (2014) 208–215. 10.1016/j.tsf.2014.08.018Suche in Google Scholar
[13] D.Albrecht, H.Wulfmeier, H.Fritze: Energy Technology4 (2016) 1–8. 10.1002/ente.201600117Suche in Google Scholar
[14] M.M.Thackeray, P.J.Johnson, L.A.de Picciotto, P.G.Bruce, J.B.Goodenough: Mater. Res. Bull.19 (1984) 179–187. 10.1016/0025-5408(84)90088-6Suche in Google Scholar
[15] A.Van der Ven, C.Marianetti, D.Morgan, G.Ceder: Solid State Ionics135 (2000) 21–32. 10.1016/S0167-2738(00)00326-XSuche in Google Scholar
[16] J.B.Bates, N.J.Dudney, D.C.Lubben, G.R.Gruzalski, B.S.Kwak, X.Yu, R.A.Zuhr: J. Power Sources54 (1995) 58–62. 10.1016/0378-7753(94)02040-ASuche in Google Scholar
[17] F.K.Shokoohi, J.M.Tarascon, B.J.Wilkens: Appl. Phys. Lett.59 (1991) 1260–1262. 10.1063/1.105470Suche in Google Scholar
[18] J.Xie, T.Tanaka, N.Imanishi, T.Matsumura, A.Hirano, Y.Takeda, O.Yamamoto: J. Power Sources180 (2008) 576–581. 10.1016/j.jpowsour.2008.02.049Suche in Google Scholar
[19] C.Julien, E.Haro-Poniatowski, M.A.Camacho-Iopez, L.Escobar-Alarcon: Mater. Sci. Eng.72 (2000) 36–46. 10.1016/S0921-5107(99)00598-XSuche in Google Scholar
[20] J.Xie, K.Kohno, T.Matsumura, N.Imanishi, A.Hirano, Y.Takeda, O.Yamamoto: Electrochim. Acta54 (2008) 376–381. 10.1016/j.electacta.2008.07.067Suche in Google Scholar
[21] M.Morcette, P.Barboux, J.Perrierere, T.Brousse, A.Traverse, J.P.Boliot: Solid State Ionics138 (2001) 213–219. 10.1016/S0167-2738(00)00796-7Suche in Google Scholar
[22] Z.Quan, S.Ohguchi, M.Kawase, H.Tanimura, N.Sonoyama: J. Power Sources244 (2013) 375–381. 10.1016/j.jpowsour.2012.12.087Suche in Google Scholar
[23] A.K.Padhi, K.S.Nanjundaswamy, J.B.Goodenough: J. Electrochem. Soc.144 (1997) 1188–1194. 10.1149/1.1837571Suche in Google Scholar
[24] P.Bai, D.A.Cogswell, M.Z.Bazant: Nanoletters11 (2011) 4890–4896. PMid: 21985573 10.1021/nl202764fSuche in Google Scholar PubMed
[25] W.Weppner, R.A.Huggins: J. Electrochem. Soc.124 (1977) 1569–1578. 10.1149/1.2133112Suche in Google Scholar
[26] N.Meethong, H.-Y.S.Huang, W.C.Carter, Y.M.Chiang: Electrochem. Solid-State Lett.10 (2007) A134–A138. 10.1149/1.2710960Suche in Google Scholar
[27] G.Chen, X.Song, T.J.Richardson: Electrochem. Solid-State Lett.9 (2006) A295–A298. 10.1149/1.2192695Suche in Google Scholar
[28] G.Alefeld: Ber. Bunsenges. Phys. Chem.76 (1972) 355,.Suche in Google Scholar
[29] Y.Fukai: The Metal-Hydrogen System, (2nd Edition) Springer-Verlag, Berlin (2005) Sect. 2.10.1007/3-540-28883-XSuche in Google Scholar
[30] J.D.Eshelby, in F.Seitz, D.Turnbull (Eds.): Solid State Physics Vol. 3, Academic Press, New York (1956) 76.Suche in Google Scholar
[31] F.Zhou, T.Maxisch, G.Ceder: Phys. Rev. Lett.97 (2006) 155704. 10.1103/PhysRevLett.97.155704Suche in Google Scholar PubMed
[32] T.Ohzuku, K.Masaki, H.Taketsugu: J. Electrochem. Soc.137 (1990) 769–775. 10.1149/1.2086552Suche in Google Scholar
[33] A.van der Ven, K.Garikipati, S.Kim, M.Wagemaker: J. Electrochem. Soc.156 (2009) A949–A957. 10.1149/1.3222746Suche in Google Scholar
[34] T.Maxisch, G.Ceder: Phys. Rev. B73 (2006) 174112. 10.1103/PhysRevB.73.174112Suche in Google Scholar
[35] J.Mürter: Production and characterization of LiMn2O4 thin film battery electrodes, Master thesis, Univ. of Stuttgart, Germany (2016).Suche in Google Scholar
[36] J.E.B.Randles: Trans. Faraday Soc.44 (1948) 327–338. 10.1039/TF9484400327Suche in Google Scholar
[37] K.Aoiki, K.Tokuda, H.Matsuda: J. Electroanal. Chem.146 (1983) 417–424. 10.1016/S0022-0728(83)80601-9Suche in Google Scholar
[38] G.Martin: Phys. Rev. B: Condens. Matter41 (1990) 2279. 10.1103/PhysRevB.41.2279Suche in Google Scholar
[39] Z.Erdelyi, D.L.Beke: Scr. Mater.49 (2003) 613–617. 10.1016/S1359-6462(03)00353-1Suche in Google Scholar
[40] F.Wunde: PhD Thesis, Atomare Transportprozesse in Dünnschichtelektroden für Lithium-Ionen-Batterien, Univ. of Münster, Germany (2015).Suche in Google Scholar
© 2017, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Priority Programme 1473 (SPP1473) funded by the German Research Foundation: “Materials with new design for improved lithium ion batteries – WeNDeLIB”
- Original Contributions
- Enthalpies of formation of layered LiNixMnxCo1–2xO2 (0 ≤ x ≤ 0.5) compounds as lithium ion battery cathode materials
- Dependence of the constitution, microstructure and electrochemical behaviour of magnetron sputtered Li–Ni–Mn–Co–O thin film cathodes for lithium-ion batteries on the working gas pressure and annealing conditions
- Phase diagram, thermodynamic investigations, and modelling of systems relevant to lithium-ion batteries
- Thin-film calorimetry: In-situ characterization of materials for lithium-ion batteries
- Si- and Sn-containing SiOCN-based nanocomposites as anode materials for lithium ion batteries: synthesis, thermodynamic characterization and modeling
- Phase formation in alloy-type anode materials in the quaternary system Li–Sn–Si–C
- Thermodynamic characterization of lithium monosilicide (LiSi) by means of calorimetry and DFT-calculations
- Thermochemical stability of Li–Cu–O ternary compounds stable at room temperature analyzed by experimental and theoretical methods
- Coexistence of conversion and intercalation mechanisms in lithium ion batteries: Consequences for microstructure and interaction between the active material and electrolyte
- Ion transport and phase transformation in thin film intercalation electrodes
- Electrochemical lithiation of silicon electrodes: neutron reflectometry and secondary ion mass spectrometry investigations
- Interlaboratory study of the heat capacity of LiNi1/3Mn1/3Co1/3O2 (NMC111) with layered structure
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Priority Programme 1473 (SPP1473) funded by the German Research Foundation: “Materials with new design for improved lithium ion batteries – WeNDeLIB”
- Original Contributions
- Enthalpies of formation of layered LiNixMnxCo1–2xO2 (0 ≤ x ≤ 0.5) compounds as lithium ion battery cathode materials
- Dependence of the constitution, microstructure and electrochemical behaviour of magnetron sputtered Li–Ni–Mn–Co–O thin film cathodes for lithium-ion batteries on the working gas pressure and annealing conditions
- Phase diagram, thermodynamic investigations, and modelling of systems relevant to lithium-ion batteries
- Thin-film calorimetry: In-situ characterization of materials for lithium-ion batteries
- Si- and Sn-containing SiOCN-based nanocomposites as anode materials for lithium ion batteries: synthesis, thermodynamic characterization and modeling
- Phase formation in alloy-type anode materials in the quaternary system Li–Sn–Si–C
- Thermodynamic characterization of lithium monosilicide (LiSi) by means of calorimetry and DFT-calculations
- Thermochemical stability of Li–Cu–O ternary compounds stable at room temperature analyzed by experimental and theoretical methods
- Coexistence of conversion and intercalation mechanisms in lithium ion batteries: Consequences for microstructure and interaction between the active material and electrolyte
- Ion transport and phase transformation in thin film intercalation electrodes
- Electrochemical lithiation of silicon electrodes: neutron reflectometry and secondary ion mass spectrometry investigations
- Interlaboratory study of the heat capacity of LiNi1/3Mn1/3Co1/3O2 (NMC111) with layered structure
- DGM News
- DGM News