Startseite Evolution of the temperature, microstructures and microsegregation in equiaxed solidification of Al-5 wt.% Cu alloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Evolution of the temperature, microstructures and microsegregation in equiaxed solidification of Al-5 wt.% Cu alloy

  • Xiaoping Ma und Dianzhong Li
Veröffentlicht/Copyright: 4. Mai 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, the evolutions of the microstructures and microsegregation are related to the cooling curve in equiaxed dendritic solidification of the Al-5 wt.% Cu alloy. In addition to regular branching of dendritic arms, leaf venation branching, free branching and radial branching were also observed. With the extension of the dendritic zone, both the composition of the extra-dendritic melt and average composition of the dendritic zone change. The microsegregation mechanism in the dendritic zone deviates from the modified Scheil model. The microsegregation data suggest that the single dendritic arm is a porous structure containing the trapped boundary layer. As the temperature decreased after the isothermal periods, some original dendritic arms and interdendritic melt converged to form a new dendritic arm.


*Correspondence address, Xiaoping Ma, National Laboratory for Materials Science, Institute of Metal Research, Shenyang, Wenhua road 72#, Shenyang 110016, P. R. China, Tel.: +86-024-83970106, E-mail:

References

[1] T.W.Clyne, W.Kurz: Metall. Trans. A12 (1981) 965. 10.1007/BF02643477Suche in Google Scholar

[2] Q.Du, D.G.Eskin, A.Jacot, L.Katgerman: Acta Mater.55 (2007) 1523. 10.1016/j.actamat.2006.10.035Suche in Google Scholar

[3] K.S.Cruz, I.L.Ferreira, J.E.Spinelli, N.Cheung, A.Garcia: Mater. Chem. Phys.115 (2009) 116. 10.1016/j.matchemphys.2008.11.037Suche in Google Scholar

[4] M.C.Flemings: ISIJ Int.40 (2000) 833. 10.2355/isijinternational.40.833Suche in Google Scholar

[5] C.Beckermann: Int. Mater. Rev.47 (2002) 243. 10.1179/095066002225006557Suche in Google Scholar

[6] L.Yuan, P.D.Lee: Acta Mater.60 (2012) 4917. 10.1016/j.actamat.2011.11.042Suche in Google Scholar

[7] M.N.Gungor: Metall. Trans. A20 (1989) 2529. 10.1007/BF02666687Suche in Google Scholar

[8] J.Lacaze, G.Lesoult: ISIJ Int.35 (1995) 658. 10.2355/isijinternational.35.658Suche in Google Scholar

[9] E.Scheil: Z. Metallkd.34 (1942) 70.10.1515/ijmr-1942-340303Suche in Google Scholar

[10] H.D.Brody, M.C.Flemings: Trans. Metall. Soc. AIME236 (1966) 615.Suche in Google Scholar

[11] M.Basaran: Metall. Trans. A12 (1981) 1235. 10.1007/BF02642337Suche in Google Scholar

[12] A.Roosz, E.Halder, H.E.Exner: Mater. Sci. Technol.2 (1986) 1149. 10.1179/mst.1986.2.11.1149Suche in Google Scholar

[13] M.H.Burden, J.D.Hunt: J. Cryst. Growth22 (1974) 99. 10.1016/0022-0248(74)90126-2Suche in Google Scholar

[14] W.Kurz, D.J.Fisher: Acta Metall.29 (1981) 11. 10.1016/0001-6160(81)90082-1Suche in Google Scholar

[15] W.Kurz, B.Giovanola, R.Trivedi: J. Cryst. Growth91 (1988) 123. 10.1016/0022-0248(88)90376-4Suche in Google Scholar

[16] E.C.Kurum, H.B.Dong, J.D.Hunt: Metall. Mater. Trans. A36 (2005) 3103. 10.1007/s11661-005-0082-7Suche in Google Scholar

[17] F.Y.Xie, T.Kraft, Y.Zuo, C.H.Moon, Y.A.Chang: Acta Mater.47 (1999) 489. 10.1016/S1359-6454(98)00372-3Suche in Google Scholar

[18] X.Y.Yan, F.Y.Xie, M.Chu, Y.A.Chang: Mater. Sci. Eng. A302 (2001) 268. 10.1016/S0921-5093(00)01825-6Suche in Google Scholar

[19] J.A.Burton, R.C.Prim, W.P.Schlichter: J. Chem. Phys.21 (1953) 1987. 10.1063/1.1698728Suche in Google Scholar

[20] X.Yan, S.Chen, F.Xie, Y.A.Chang: Acta Mater.50 (2002) 2199. 10.1016/S1359-6454(01)00431-1Suche in Google Scholar

[21] T.Kraft, M.Rettenmayr, H.E.Exner: Modell. Simul. Mater. Sci. Eng.4 (1996) 161. 10.1088/0965-0393/4/2/004Suche in Google Scholar

[22] D.Eskin, Q.Du, D.Ruvalcaba, L.Katgerman: Mater. Sci. Eng.A405 (2005) 1. 10.1016/j.msea.2005.05.105Suche in Google Scholar

[23] H.B.Dong, M.R.M.Shin, E.C.Kurum, H.Cama, J.D.Hunt: Metall. Mater. Trans. A34 (2003) 441. 10.1007/s11661-003-0080-6Suche in Google Scholar

[24] Ch.A.Gandin, S.Mosbah, Th.Volkmann, D.M.Herlach: Acta Mater.56 (2008) 3023. 10.1016/j.actamat.2008.02.041Suche in Google Scholar

[25] X.P.Ma, D.Z.Li: Appl. Phys. Lett.102 (2013) 241903. 10.1063/1.4789514Suche in Google Scholar

[26] X.P.Ma, D.Z.Li: Metall. Mater. Trans. A46 (2015) 549. 10.1007/s11661-014-2711-5Suche in Google Scholar

[27] X.P.Ma, D.Z.Li: Cryst. Growth Des.16 (2016) 3163. 10.1021/acs.cgd.5b01502Suche in Google Scholar

[28] X.P.Ma, X.H.Kang, D.Z.Li: J. Alloys Compd.681 (2016) 492. 10.1016/j.allcom.2016.04.273Suche in Google Scholar

Received: 2016-06-27
Accepted: 2017-02-01
Published Online: 2017-05-04
Published in Print: 2017-05-15

© 2017, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111488/pdf?lang=de
Button zum nach oben scrollen