Evolution of the temperature, microstructures and microsegregation in equiaxed solidification of Al-5 wt.% Cu alloy
-
Xiaoping Ma
and Dianzhong Li
Abstract
In this study, the evolutions of the microstructures and microsegregation are related to the cooling curve in equiaxed dendritic solidification of the Al-5 wt.% Cu alloy. In addition to regular branching of dendritic arms, leaf venation branching, free branching and radial branching were also observed. With the extension of the dendritic zone, both the composition of the extra-dendritic melt and average composition of the dendritic zone change. The microsegregation mechanism in the dendritic zone deviates from the modified Scheil model. The microsegregation data suggest that the single dendritic arm is a porous structure containing the trapped boundary layer. As the temperature decreased after the isothermal periods, some original dendritic arms and interdendritic melt converged to form a new dendritic arm.
References
[1] T.W.Clyne, W.Kurz: Metall. Trans. A12 (1981) 965. 10.1007/BF02643477Search in Google Scholar
[2] Q.Du, D.G.Eskin, A.Jacot, L.Katgerman: Acta Mater.55 (2007) 1523. 10.1016/j.actamat.2006.10.035Search in Google Scholar
[3] K.S.Cruz, I.L.Ferreira, J.E.Spinelli, N.Cheung, A.Garcia: Mater. Chem. Phys.115 (2009) 116. 10.1016/j.matchemphys.2008.11.037Search in Google Scholar
[4] M.C.Flemings: ISIJ Int.40 (2000) 833. 10.2355/isijinternational.40.833Search in Google Scholar
[5] C.Beckermann: Int. Mater. Rev.47 (2002) 243. 10.1179/095066002225006557Search in Google Scholar
[6] L.Yuan, P.D.Lee: Acta Mater.60 (2012) 4917. 10.1016/j.actamat.2011.11.042Search in Google Scholar
[7] M.N.Gungor: Metall. Trans. A20 (1989) 2529. 10.1007/BF02666687Search in Google Scholar
[8] J.Lacaze, G.Lesoult: ISIJ Int.35 (1995) 658. 10.2355/isijinternational.35.658Search in Google Scholar
[9] E.Scheil: Z. Metallkd.34 (1942) 70.10.1515/ijmr-1942-340303Search in Google Scholar
[10] H.D.Brody, M.C.Flemings: Trans. Metall. Soc. AIME236 (1966) 615.Search in Google Scholar
[11] M.Basaran: Metall. Trans. A12 (1981) 1235. 10.1007/BF02642337Search in Google Scholar
[12] A.Roosz, E.Halder, H.E.Exner: Mater. Sci. Technol.2 (1986) 1149. 10.1179/mst.1986.2.11.1149Search in Google Scholar
[13] M.H.Burden, J.D.Hunt: J. Cryst. Growth22 (1974) 99. 10.1016/0022-0248(74)90126-2Search in Google Scholar
[14] W.Kurz, D.J.Fisher: Acta Metall.29 (1981) 11. 10.1016/0001-6160(81)90082-1Search in Google Scholar
[15] W.Kurz, B.Giovanola, R.Trivedi: J. Cryst. Growth91 (1988) 123. 10.1016/0022-0248(88)90376-4Search in Google Scholar
[16] E.C.Kurum, H.B.Dong, J.D.Hunt: Metall. Mater. Trans. A36 (2005) 3103. 10.1007/s11661-005-0082-7Search in Google Scholar
[17] F.Y.Xie, T.Kraft, Y.Zuo, C.H.Moon, Y.A.Chang: Acta Mater.47 (1999) 489. 10.1016/S1359-6454(98)00372-3Search in Google Scholar
[18] X.Y.Yan, F.Y.Xie, M.Chu, Y.A.Chang: Mater. Sci. Eng. A302 (2001) 268. 10.1016/S0921-5093(00)01825-6Search in Google Scholar
[19] J.A.Burton, R.C.Prim, W.P.Schlichter: J. Chem. Phys.21 (1953) 1987. 10.1063/1.1698728Search in Google Scholar
[20] X.Yan, S.Chen, F.Xie, Y.A.Chang: Acta Mater.50 (2002) 2199. 10.1016/S1359-6454(01)00431-1Search in Google Scholar
[21] T.Kraft, M.Rettenmayr, H.E.Exner: Modell. Simul. Mater. Sci. Eng.4 (1996) 161. 10.1088/0965-0393/4/2/004Search in Google Scholar
[22] D.Eskin, Q.Du, D.Ruvalcaba, L.Katgerman: Mater. Sci. Eng.A405 (2005) 1. 10.1016/j.msea.2005.05.105Search in Google Scholar
[23] H.B.Dong, M.R.M.Shin, E.C.Kurum, H.Cama, J.D.Hunt: Metall. Mater. Trans. A34 (2003) 441. 10.1007/s11661-003-0080-6Search in Google Scholar
[24] Ch.A.Gandin, S.Mosbah, Th.Volkmann, D.M.Herlach: Acta Mater.56 (2008) 3023. 10.1016/j.actamat.2008.02.041Search in Google Scholar
[25] X.P.Ma, D.Z.Li: Appl. Phys. Lett.102 (2013) 241903. 10.1063/1.4789514Search in Google Scholar
[26] X.P.Ma, D.Z.Li: Metall. Mater. Trans. A46 (2015) 549. 10.1007/s11661-014-2711-5Search in Google Scholar
[27] X.P.Ma, D.Z.Li: Cryst. Growth Des.16 (2016) 3163. 10.1021/acs.cgd.5b01502Search in Google Scholar
[28] X.P.Ma, X.H.Kang, D.Z.Li: J. Alloys Compd.681 (2016) 492. 10.1016/j.allcom.2016.04.273Search in Google Scholar
© 2017, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Downloads and the impact of Open Access at IJMR
- Original Contributions
- A material selection approach using the TODIM (TOmada de Decisao Interativa Multicriterio) method and its analysis
- Investigation of the influence of Fe on the microstructure and properties of Ti5553 near-β titanium alloy with combinatorial approach
- Evolution of the temperature, microstructures and microsegregation in equiaxed solidification of Al-5 wt.% Cu alloy
- Phase composition and microstructure of materials in the Ir–Ru–B system prepared by arc melting and VHP sintering
- Thermal shock behavior of rare earth modified alumina ceramic composites
- Investigation of tribological and corrosion properties of CuTi–alumina nanocomposite fabricated by mechanical alloying
- Effect of acetic acid on corrosion behavior of AISI 201, 304 and 430 stainless steels
- Verification of strength mis-match of electron beam welded heavy thickness titanium alloy
- Short Communications
- Effect of toughening Fe2B by the addition of tungsten on the wear resistance of Fe–B–C alloy
- Microstructural stability of heat-resistant high-pressure die-cast Mg-4Al-4Ce alloy
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Downloads and the impact of Open Access at IJMR
- Original Contributions
- A material selection approach using the TODIM (TOmada de Decisao Interativa Multicriterio) method and its analysis
- Investigation of the influence of Fe on the microstructure and properties of Ti5553 near-β titanium alloy with combinatorial approach
- Evolution of the temperature, microstructures and microsegregation in equiaxed solidification of Al-5 wt.% Cu alloy
- Phase composition and microstructure of materials in the Ir–Ru–B system prepared by arc melting and VHP sintering
- Thermal shock behavior of rare earth modified alumina ceramic composites
- Investigation of tribological and corrosion properties of CuTi–alumina nanocomposite fabricated by mechanical alloying
- Effect of acetic acid on corrosion behavior of AISI 201, 304 and 430 stainless steels
- Verification of strength mis-match of electron beam welded heavy thickness titanium alloy
- Short Communications
- Effect of toughening Fe2B by the addition of tungsten on the wear resistance of Fe–B–C alloy
- Microstructural stability of heat-resistant high-pressure die-cast Mg-4Al-4Ce alloy
- DGM News
- DGM News