Home Evolution of the temperature, microstructures and microsegregation in equiaxed solidification of Al-5 wt.% Cu alloy
Article
Licensed
Unlicensed Requires Authentication

Evolution of the temperature, microstructures and microsegregation in equiaxed solidification of Al-5 wt.% Cu alloy

  • Xiaoping Ma and Dianzhong Li
Published/Copyright: May 4, 2017
Become an author with De Gruyter Brill

Abstract

In this study, the evolutions of the microstructures and microsegregation are related to the cooling curve in equiaxed dendritic solidification of the Al-5 wt.% Cu alloy. In addition to regular branching of dendritic arms, leaf venation branching, free branching and radial branching were also observed. With the extension of the dendritic zone, both the composition of the extra-dendritic melt and average composition of the dendritic zone change. The microsegregation mechanism in the dendritic zone deviates from the modified Scheil model. The microsegregation data suggest that the single dendritic arm is a porous structure containing the trapped boundary layer. As the temperature decreased after the isothermal periods, some original dendritic arms and interdendritic melt converged to form a new dendritic arm.


*Correspondence address, Xiaoping Ma, National Laboratory for Materials Science, Institute of Metal Research, Shenyang, Wenhua road 72#, Shenyang 110016, P. R. China, Tel.: +86-024-83970106, E-mail:

References

[1] T.W.Clyne, W.Kurz: Metall. Trans. A12 (1981) 965. 10.1007/BF02643477Search in Google Scholar

[2] Q.Du, D.G.Eskin, A.Jacot, L.Katgerman: Acta Mater.55 (2007) 1523. 10.1016/j.actamat.2006.10.035Search in Google Scholar

[3] K.S.Cruz, I.L.Ferreira, J.E.Spinelli, N.Cheung, A.Garcia: Mater. Chem. Phys.115 (2009) 116. 10.1016/j.matchemphys.2008.11.037Search in Google Scholar

[4] M.C.Flemings: ISIJ Int.40 (2000) 833. 10.2355/isijinternational.40.833Search in Google Scholar

[5] C.Beckermann: Int. Mater. Rev.47 (2002) 243. 10.1179/095066002225006557Search in Google Scholar

[6] L.Yuan, P.D.Lee: Acta Mater.60 (2012) 4917. 10.1016/j.actamat.2011.11.042Search in Google Scholar

[7] M.N.Gungor: Metall. Trans. A20 (1989) 2529. 10.1007/BF02666687Search in Google Scholar

[8] J.Lacaze, G.Lesoult: ISIJ Int.35 (1995) 658. 10.2355/isijinternational.35.658Search in Google Scholar

[9] E.Scheil: Z. Metallkd.34 (1942) 70.10.1515/ijmr-1942-340303Search in Google Scholar

[10] H.D.Brody, M.C.Flemings: Trans. Metall. Soc. AIME236 (1966) 615.Search in Google Scholar

[11] M.Basaran: Metall. Trans. A12 (1981) 1235. 10.1007/BF02642337Search in Google Scholar

[12] A.Roosz, E.Halder, H.E.Exner: Mater. Sci. Technol.2 (1986) 1149. 10.1179/mst.1986.2.11.1149Search in Google Scholar

[13] M.H.Burden, J.D.Hunt: J. Cryst. Growth22 (1974) 99. 10.1016/0022-0248(74)90126-2Search in Google Scholar

[14] W.Kurz, D.J.Fisher: Acta Metall.29 (1981) 11. 10.1016/0001-6160(81)90082-1Search in Google Scholar

[15] W.Kurz, B.Giovanola, R.Trivedi: J. Cryst. Growth91 (1988) 123. 10.1016/0022-0248(88)90376-4Search in Google Scholar

[16] E.C.Kurum, H.B.Dong, J.D.Hunt: Metall. Mater. Trans. A36 (2005) 3103. 10.1007/s11661-005-0082-7Search in Google Scholar

[17] F.Y.Xie, T.Kraft, Y.Zuo, C.H.Moon, Y.A.Chang: Acta Mater.47 (1999) 489. 10.1016/S1359-6454(98)00372-3Search in Google Scholar

[18] X.Y.Yan, F.Y.Xie, M.Chu, Y.A.Chang: Mater. Sci. Eng. A302 (2001) 268. 10.1016/S0921-5093(00)01825-6Search in Google Scholar

[19] J.A.Burton, R.C.Prim, W.P.Schlichter: J. Chem. Phys.21 (1953) 1987. 10.1063/1.1698728Search in Google Scholar

[20] X.Yan, S.Chen, F.Xie, Y.A.Chang: Acta Mater.50 (2002) 2199. 10.1016/S1359-6454(01)00431-1Search in Google Scholar

[21] T.Kraft, M.Rettenmayr, H.E.Exner: Modell. Simul. Mater. Sci. Eng.4 (1996) 161. 10.1088/0965-0393/4/2/004Search in Google Scholar

[22] D.Eskin, Q.Du, D.Ruvalcaba, L.Katgerman: Mater. Sci. Eng.A405 (2005) 1. 10.1016/j.msea.2005.05.105Search in Google Scholar

[23] H.B.Dong, M.R.M.Shin, E.C.Kurum, H.Cama, J.D.Hunt: Metall. Mater. Trans. A34 (2003) 441. 10.1007/s11661-003-0080-6Search in Google Scholar

[24] Ch.A.Gandin, S.Mosbah, Th.Volkmann, D.M.Herlach: Acta Mater.56 (2008) 3023. 10.1016/j.actamat.2008.02.041Search in Google Scholar

[25] X.P.Ma, D.Z.Li: Appl. Phys. Lett.102 (2013) 241903. 10.1063/1.4789514Search in Google Scholar

[26] X.P.Ma, D.Z.Li: Metall. Mater. Trans. A46 (2015) 549. 10.1007/s11661-014-2711-5Search in Google Scholar

[27] X.P.Ma, D.Z.Li: Cryst. Growth Des.16 (2016) 3163. 10.1021/acs.cgd.5b01502Search in Google Scholar

[28] X.P.Ma, X.H.Kang, D.Z.Li: J. Alloys Compd.681 (2016) 492. 10.1016/j.allcom.2016.04.273Search in Google Scholar

Received: 2016-06-27
Accepted: 2017-02-01
Published Online: 2017-05-04
Published in Print: 2017-05-15

© 2017, Carl Hanser Verlag, München

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111488/pdf
Scroll to top button