Thermal shock behavior of rare earth modified alumina ceramic composites
-
Junlong Sun
and Changxia Liu
Abstract
Alumina matrix ceramic composites toughened by AlTiC master alloys, diopside and rare earths were fabricated by hot-pressing and their thermal shock behavior was investigated and compared with that of monolithic alumina. Results showed that the critical thermal shock temperature (ΔT) of monolithic alumina was 400 °C. However, it decreased to 300 °C for alumina incorporating only AlTiC master alloys, and increased with further addition of diopside and rare earths. Improvement of thermal shock resistance was obtained for alumina ceramic composites containing 9.5 wt.% AlTiC master alloys and 0.5 wt.% rare earth additions, which was mainly attributed to the formation of elongated grains in the composites.
References
[1] D.P.H.Hasselman: J. Am. Ceram. Soc.49 (1965) 103. 10.1111/j.1151-2916.1966.tb13218.xSearch in Google Scholar
[2] D.P.H.Hasselman: J. Am. Ceram. Soc.52 (1969) 600. 10.1111/j.1151-2916.1969.tb15848.xSearch in Google Scholar
[3] D.P.H.Hasselman: Ceram. Bull.49 (1970) 1033.10.1213/00000539-197011000-00036Search in Google Scholar
[4] W.D.Kingery: J. Am. Ceram. Soc.38 (1954) 3. 10.1111/j.1151-2916.1955.tb14545.xSearch in Google Scholar
[5] N.M.Rendtorff, L.B.Garrido, E.F.Aglietti: Mater. Sci. Eng.A498 (2008) 208. 10.1016/j.msea.2008.08.036Search in Google Scholar
[6] C.X.Liu, J.L.Sun, Z.Y.Xie: J. Alloys Compd.546 (2013) 102. 10.1016/j.jallcom.2012.08.097Search in Google Scholar
[7] C.X.Liu, J.L.Sun, Z.M.Tian: Int. J. Mater. Res.104 (2013) 1137. 10.3139/146.110967Search in Google Scholar
[8] C.X.Liu, J.H.Zhang, J.L.Sun, X.H.Zhang: J. Eur. Ceram. Soc.28 (2008) 199. 10.1016/j.jeurceramsoc.2007.05.023Search in Google Scholar
[9] C.X.Liu, J.H.Zhang, J.L.Sun, X.H.Zhang, Y.J.Hu: Ceram. Int.33 (2007) 1149. 10.1016/j.ceramint.2006.03.018Search in Google Scholar
[10] C.X.Liu, J.L.Sun, M.H.Yao: Mater. Res. Innovations17 (2013) 293. 10.1179/1433075X12Y.0000000075Search in Google Scholar
[11] X.Q.You, T.Z.Si, N.Liu, P.P.Ren, Y.D.Xu, J.P.Feng: Ceram. Int.31 (2005) 33. 10.1016/j.ceramint.2004.02.009Search in Google Scholar
[12] L.Y.Shen, M.J.Liu, X.Z.Liu, B.Li: Mater. Res. Bull.42 (2007) 2048. 10.1016/j.materresbull.2007.02.001Search in Google Scholar
[13] P.Hvizdoš, D.Jonsson, M.Anglada, G.Anné, O.V.D.Biest: J. Eur. Ceram. Soc.27 (2007) 1365. 10.1016/j.jeurceramsoc.2006.05.030Search in Google Scholar
[14] P.K.Panda, V.A.Jaleel, G.Lefebvre: Mater. Sci. Eng. A485 (2008) 558. 10.1016/j.msea.2007.10.080Search in Google Scholar
[15] H.Majidian, T.Ebadzadeh, E.Salahi: Mater. Sci. Eng. A530 (2011) 585. 10.1016/j.msea.2011.10.027Search in Google Scholar
[16] M.M.S.Wahsh, R.M.Khattab, M.Awaad: Mater. Des.41 (2012) 31. 10.1016/j.matdes.2012.04.040Search in Google Scholar
[17] I.D.Katsavou, M.K.Krokida, I.C.Ziomas: Ceram. Int.38 (2012) 5747. 10.1016/j.ceramint.2012.04.021Search in Google Scholar
[18] I.Z.Tiluga, V.Svinka, R.Svinka, L.Grase: Ceram. Int.41 (2015) 11504. 10.1016/j.ceramint.2015.05.116Search in Google Scholar
[19] C.Aksel, P.D.Warren: J. Eur. Ceram. Soc.23 (2003) 301. 10.1016/S0955-2219(02)00178-4Search in Google Scholar
[20] M.Kalantar, G.Fantozzi: Mater. Sci. Eng. A472 (2008) 237. 10.1016/j.msea.2007.03.032Search in Google Scholar
[21] A.Kovalčíková, J.Dusza, P.Šajgalík: J. Eur. Ceram. Soc.29 (2009) 2387. 10.1016/j.jeurceramsoc.2009.01.021Search in Google Scholar
© 2017, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Downloads and the impact of Open Access at IJMR
- Original Contributions
- A material selection approach using the TODIM (TOmada de Decisao Interativa Multicriterio) method and its analysis
- Investigation of the influence of Fe on the microstructure and properties of Ti5553 near-β titanium alloy with combinatorial approach
- Evolution of the temperature, microstructures and microsegregation in equiaxed solidification of Al-5 wt.% Cu alloy
- Phase composition and microstructure of materials in the Ir–Ru–B system prepared by arc melting and VHP sintering
- Thermal shock behavior of rare earth modified alumina ceramic composites
- Investigation of tribological and corrosion properties of CuTi–alumina nanocomposite fabricated by mechanical alloying
- Effect of acetic acid on corrosion behavior of AISI 201, 304 and 430 stainless steels
- Verification of strength mis-match of electron beam welded heavy thickness titanium alloy
- Short Communications
- Effect of toughening Fe2B by the addition of tungsten on the wear resistance of Fe–B–C alloy
- Microstructural stability of heat-resistant high-pressure die-cast Mg-4Al-4Ce alloy
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Downloads and the impact of Open Access at IJMR
- Original Contributions
- A material selection approach using the TODIM (TOmada de Decisao Interativa Multicriterio) method and its analysis
- Investigation of the influence of Fe on the microstructure and properties of Ti5553 near-β titanium alloy with combinatorial approach
- Evolution of the temperature, microstructures and microsegregation in equiaxed solidification of Al-5 wt.% Cu alloy
- Phase composition and microstructure of materials in the Ir–Ru–B system prepared by arc melting and VHP sintering
- Thermal shock behavior of rare earth modified alumina ceramic composites
- Investigation of tribological and corrosion properties of CuTi–alumina nanocomposite fabricated by mechanical alloying
- Effect of acetic acid on corrosion behavior of AISI 201, 304 and 430 stainless steels
- Verification of strength mis-match of electron beam welded heavy thickness titanium alloy
- Short Communications
- Effect of toughening Fe2B by the addition of tungsten on the wear resistance of Fe–B–C alloy
- Microstructural stability of heat-resistant high-pressure die-cast Mg-4Al-4Ce alloy
- DGM News
- DGM News