Structural and mechanical study on Mg–xLM (x = 0–5 wt.%, LM = Sn, Ga) alloys
-
Jiří Kubásek
Abstract
Low-melting point metals, such as Sn and Ga, can improve both the mechanical and corrosion properties of pure Mg. Currently, Mg–Sn based alloys are being considered for high-temperature applications, and both Mg–Sn and Mg–Ga based alloys are also being considered as possible candidates for biodegradable materials. Although these binary systems have already been the subject of research, only limited information on their characteristics has been published. Therefore, as-cast Mg–Sn and Mg–Ga alloys containing 1, 3.5 and 5 wt.% of alloying elements were studied in the present work. Moreover, the effect of extrusion on Mg–Sn and Mg–Ga alloys containing 3.5 wt.% of the alloying element was studied. Structural and chemical analyses of the alloys were performed by using light and scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. The mechanical properties were determined by Vickers hardness measurements and tensile and compressive testing. The as-cast alloys were characterized by a dendritic morphology with the presence of secondary eutectic phases. Both Sn and Ga exhibited hardening and strengthening effects on magnesium. The extruded alloys were characterized by fine-grained microstructures with a grain size of approximately 3 and 6 μm for Mg-3.5Sn and Mg-3.5Ga alloys, respectively, and significantly improved mechanical properties compared with the as-cast state. The ultimate tensile strength reached almost 250 MPa for both extruded alloys compared with 120–150 MPa for the as-cast condition. The results indicate that Mg–Sn- and Mg–Ga-based alloys appear to be suitable candidates for both engineering and medical applications.
References
[1] K.U.Kainer: Magnesium Alloys and Technologies, John Wiley & Sons (2006).Suche in Google Scholar
[2] A.Luo, M.O.Pekguleryuz: J. Mater. Sci.29 (1994) 5259–5271. 10.1007/bf01171534Suche in Google Scholar
[3] H.Liu, Y.Chen, Y.Tang, S.Wei, G.Niu: J. Alloys Compd.440 (2007) 122–126. 10.1016/j.jallcom.2006.09.024Suche in Google Scholar
[4] W.F.Gale, T.C.Totemeier: Smithells Metals Reference Book (8th Edition), Butterworth-Heinemann, Oxford (2004). 10.1016/B978-075067509-3/50000-2Suche in Google Scholar
[5] J.-M.Seitz, E.Wulf, P.Freytag, D.Bormann, F.-W.Bach: Adv. Eng. Mater.12 (2010) 1099–1105. 10.1002/adem.201000191Suche in Google Scholar
[6] A.Krause, N.Höh, D.Bormann, C.Krause, F.-W.Bach, H.Windhagen, A.Meyer-Lindenberg: J. Mater. Sci.45 (2010) 624–632. 10.1007/s10853-009-3936-3Suche in Google Scholar
[7] M.Thomann, C.Krause, D.Bormann, N.von der Höh, H.Windhagen, A.Meyer-Lindenberg: Materialwiss. Werkstofftechn.40 (2009) 82–87. 10.1002/mawe.200800412Suche in Google Scholar
[8] F.Witte, N.Hort, C.Vogt, S.Cohen, K.U.Kainer, R.Willumeit, F.Feyerabend: Curr. Opin. Solid State Mater. Sci.12 (2008) 63–72. 10.1016/j.cossms.2009.04.001Suche in Google Scholar
[9] T.Kraus, S.F.Fischerauer, A.C.Hänzi, P.J.Uggowitzer, J.F.Löffler, A.M.Weinberg: Acta Biomater.8 (2012) 1230–1238. 10.1016/j.actbio.2011.11.008Suche in Google Scholar PubMed
[10] L.Rokhlin: Magnesium alloys containing rare earth metals, Taylor & Francis, London (2003).10.1201/9781482265163Suche in Google Scholar
[11] F.Feyerabend, J.Fischer, J.Holtz, F.Witte, R.Willumeit, H.Drücker, C.Vogt, N.Hort: Acta Biomater.6 (2010) 1834–1842. 10.1016/j.actbio.2009.09.024Suche in Google Scholar PubMed
[12] X.Zhang, G.Yuan, L.Mao, J.Niu, P.Fu, W.Ding: J. Mech. Behav. Biomed. Mater.7 (2012) 77–86. 10.1016/j.jmbbm.2011.05.026Suche in Google Scholar
[13] F.Witte: Acta Biomater.6 (2010) 1680–1692. 10.1016/j.actbio.2010.02.028Suche in Google Scholar
[14] M.B.Yang, F.S.Pan: Mater. Des.31 (2010) 68–75. 10.1016/j.matdes.2009.07.018Suche in Google Scholar
[15] X.B.Liu, D.Y.Shan, Y.W.Song, R.S.Chen, E.H.Han: Electrochim. Acta56 (2011) 2582–2590. 10.1016/j.electacta.2010.12.030Suche in Google Scholar
[16] X.Gu, Y.Zheng, Y.Cheng, S.Zhong, T.Xi: Biomaterials30 (2009) 484–498. 10.1016/j.biomaterials.2008.10.021Suche in Google Scholar
[17] C.Zhao, F.Pan, S.Zhao, H.Pan, K.Song, A.Tang: Mater. Sci. Eng. C54 (2015) 245–251. 10.1016/j.msec.2015.05.042Suche in Google Scholar
[18] C.Zhao, F.Pan, S.Zhao, H.Pan, K.Song, A.Tang: Mater. Des.70 (2015) 60–67. 10.1016/j.matdes.2014.12.041Suche in Google Scholar
[19] Z.Zhen, T.Xi, Y.Zheng, L.Li, L.Li: J. Mater. Sci. Technol.30 (2014) 675–685. 10.1016/j.jmst.2014.04.005Suche in Google Scholar
[20] J.Kubasek, D.Vojtech, J.Lipov, T.Ruml: Mater. Sci. Eng. C33 (2013) 2421–2432. 10.1016/j.msec.2013.02.005Suche in Google Scholar
[21] Y.Feng, R.C.Wang, C.Q.Peng: Trans. Nonferrous Met. Soc. China21 (2011) 1047–1051. 10.1016/S1003-6326(11)60820-0Suche in Google Scholar
[22] H.B.Liu, G.H.Qi, Y.T.Ma, H.Hao, F.Jia, S.H.Ji, H.Y.Zhang, X.G.Zhang: Mater. Sci. Eng. A526 (2009) 7–10. 10.1016/j.msea.2009.07.073Suche in Google Scholar
[23] J.Zhao, K.Yu, Y.Hu, S.Li, X.Tan, F.Chen, Z.Yu: Electrochim. Acta56 (2011) 8224–8231. 10.1016/j.electacta.2011.06.065Suche in Google Scholar
[24] Y.Feng, R.C.Wang, K.Yu, C.Q.Peng, W.X.Li: Trans. Nonferrous Met. Soc. China17 (2007) 1363–1366. 10.1016/S1003-6326(07)60278-7Suche in Google Scholar
[25] S.A.Jewett, M.S.Makowski, B.Andrews, M.J.Manfra, A.Ivanisevic: Acta Biomater.8 (2012) 728–733. 10.1016/j.actbio.2011.09.038Suche in Google Scholar
[26] P.Melnikov, A.R.Teixeira, A.Malzac, M.D.Coelho: Mater. Chem. Phys.117 (2009) 86–90. 10.1016/j.matchemphys.2009.05.046Suche in Google Scholar
[27] C.E.Linsmeier, L.Wallman, L.Faxius, J.Schouenborg, L.M.Bjursten, N.Danielsen: Biomaterials29 (2008) 4598–4604. 10.1016/j.biomaterials.2008.08.028Suche in Google Scholar
[28] D.Chen, Y.-P.Ren, Y.Guo, W.-L.Pei, H.-D.Zhao, G.-W.Qin: Trans. Nonferrous Met. Soc. China20 (2010) 1321–1325. 10.1016/S1003-6326(09)60298-3Suche in Google Scholar
[29] H.Liu, G.Qi, Y.Ma, H.Hao, F.Jia, S.Ji, H.Zhang, X.Zhang: Mater. Sci. Eng. A526 (2009) 7–10. 10.1016/j.msea.2009.07.073Suche in Google Scholar
[30] J.Bohlen, S.B.Yi, J.Swiostek, D.Letzig, H.G.Brokmeier, K.U.Kainer: Scr. Mater.53 (2005) 259–264. 10.1016/j.scriptamat.2005.03.036Suche in Google Scholar
[31] N.Stanford, M.R.Barnett: Mater. Sci. Eng. A496 (2008) 399–408. 10.1016/j.msea.2008.05.045Suche in Google Scholar
[32] M.Shahzad, L.Wagner: Mater. Sci. Eng. A506 (2009) 141–147. 10.1016/j.msea.2008.11.038Suche in Google Scholar
[33] R.Cottam, J.Robson, G.Lorimer, B.Davis: Mater. Sci. Eng. A485 (2008) 375–382. 10.1016/j.msea.2007.08.016Suche in Google Scholar
[34] O.Sitdikov, R.Kaibyshev: Mater. Trans., JIM42 (2001) 1928–1937. 10.2320/matertrans.42.1928Suche in Google Scholar
[35] C.Bettles, M.Barnett: Advances in Wrought Magnesium Alloys, Woodhead Publishing LTD, Cambridge (2012). 10.1533/9780857093844Suche in Google Scholar
[36] M.R.Barnett, A.G.Beer, in: P.B.Prangnell, P.S.Bate (Eds.), Fundamentals of Deformation and Annealing, Trans Tech Publications Inc., Stafa-Zurich (2007) 369–374.Suche in Google Scholar
[37] S.W.Xu, M.Y.Zheng, S.Kamado, K.Wu, G.J.Wang, X.Y.Lv: Mater. Sci. Eng. A528 (2011) 4055–4067. 10.1016/j.msea.2011.01.103Suche in Google Scholar
[38] H.Haferkamp, R.Boehm, U.Holzkamp, C.Jaschik, V.Kaese, M.Niemeyer: Mater. Trans., JIM42 (2001) 1160–1166. 10.2320/matertrans.42.1160Suche in Google Scholar
[39] S.R.Agnew, M.H.Yoo, C.N.Tomé: Acta Mater.49 (2001) 4277–4289. 10.1016/S1359-6454(01)00297-XSuche in Google Scholar
[40] H.Liu, G.Qi, Y.Ma, H.Hao, F.Jia, S.Ji, H.Zhang, X.Zhang: Mater. Sci. Eng. A526 (2009) 7–10. 10.1016/j.msea.2009.07.073Suche in Google Scholar
© 2016, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Microstructural evolution and creep of Fe–Al–Ta alloys
- Creep behaviour characterisation of a ferritic steel alloy based on the modified theta-projection data at an elevated temperature
- Facile fabrication, microstructure, and corrosion resistance of high-strength, high-hardness pure bulk aluminum
- A method for improving the mechanical properties of a hypereutectic Al–Si alloy by introducing the α-Al phase
- Experimental investigation by atomic force microscopy on mechanical and tribological properties of thin films
- Influence of ceramic B4C particulate addition on tensile behavior of 6061 aluminum matrix
- Role of cerium, lanthanum, and strontium additions in an Al – Si – Mg (A356) alloy
- Structural and mechanical study on Mg–xLM (x = 0–5 wt.%, LM = Sn, Ga) alloys
- Weibull distribution application on temperature dependence of polyurethane storage modulus
- Hierarchical bismuth phosphate microspheres with high photocatalytic performance
- Influence of calcination temperature on sol–gel synthesized single-phase bismuth titanate for high dielectric capacitor applications
- People
- Prof. Dr. Wolfgang Bleck on the occasion of his 65th birthday
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Microstructural evolution and creep of Fe–Al–Ta alloys
- Creep behaviour characterisation of a ferritic steel alloy based on the modified theta-projection data at an elevated temperature
- Facile fabrication, microstructure, and corrosion resistance of high-strength, high-hardness pure bulk aluminum
- A method for improving the mechanical properties of a hypereutectic Al–Si alloy by introducing the α-Al phase
- Experimental investigation by atomic force microscopy on mechanical and tribological properties of thin films
- Influence of ceramic B4C particulate addition on tensile behavior of 6061 aluminum matrix
- Role of cerium, lanthanum, and strontium additions in an Al – Si – Mg (A356) alloy
- Structural and mechanical study on Mg–xLM (x = 0–5 wt.%, LM = Sn, Ga) alloys
- Weibull distribution application on temperature dependence of polyurethane storage modulus
- Hierarchical bismuth phosphate microspheres with high photocatalytic performance
- Influence of calcination temperature on sol–gel synthesized single-phase bismuth titanate for high dielectric capacitor applications
- People
- Prof. Dr. Wolfgang Bleck on the occasion of his 65th birthday
- DGM News
- DGM News