Influence of ceramic B4C particulate addition on tensile behavior of 6061 aluminum matrix
-
Sandeep Panyam Rajagopal
Abstract
In this study, an attempt was made to prepare 6061Al – B4Cp composites through a two-step melt stirring process at 750 °C. During the preparation of the composite, preheated K2TiF6 flux along with B4Cp (ratio 0.08) was added in the melt in two steps to avoid segregation of B4CP. Microstructural characterization was done using scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction techniques. Density, hardness and tensile strength of the cast alloy and the composite were determined both at room temperature and 100 °C. Fracture studies of the tensile specimens were also done using scanning electron microscopy.
References
[1] O.P.Modi, B.K.Prasad, A.H.Yegneswaran, M.L.Vaidya: Mater. Sci. Eng. A151 (1992) 235. 10.1016/0921-5093(92)90212-JSuche in Google Scholar
[2] J.Zhang, Z.Zhang, Y.W.Mai: Wear176 (1994) 231. 10.1016/S0043-1648(03)00121-2Suche in Google Scholar
[3] M.K.Surappa, P.K.Rohatgi: J. Mater. Sci.16 (1981) 983. 10.1007/BF00542743Suche in Google Scholar
[4] J.W.Kaczmar, K.Pietrzak, W.Wlosinski: J. Mater. Process. Technol.106 (2000) 58. 1016/S0924-0136(00)00639-7Suche in Google Scholar
[5] K.K.Chawla: Composite Materials, Springer Science & Business Media, New York (2012). ISBN: 978-1-4757-2966-5. 10.1007/978-0-387-74365-3Suche in Google Scholar
[6] M.Ajzenshtein, N.Froumin, E.Shapiro-Tsoref, M.P.Dariel, N.Frage: Scr. Mater.53 (2005) 1231. 10.1016/j.scriptamat.2005.08.006Suche in Google Scholar
[7] J.Jung, S.Kang: J. Am. Ceram. Soc.87 (2004) 47. 10.1111/j.1551-2916.2004.00047.xSuche in Google Scholar
[8] K.B.Lee, H.S.Sim, S.H.Kim, K.H.Han, H.Kwon: J. Mater. Sci.36 (2001) 3179. 10.1007/s11661-001-0031-zSuche in Google Scholar
[9] D.C.Halverson, A.J.Pyzik, I.A.Aksay: US. Pat. No. 4605440 (1986). Serial no 06/730,528.Suche in Google Scholar
[10] A.R.Kennedy, B.Brampton: Sci. Mater.44 (2001) 1077. 10.1016/S1359-6462(01)00658-3Suche in Google Scholar
[11] D.C.Halverson, A.J.Pyzik, I.A.Aksay: J. Am. Ceram. Soc.72 (1989) 775. 10.1111/j.1151-2916.1989.tb06216.xSuche in Google Scholar
[12] J.J.Lewandowsky, C.Liu, W.H.Hunt: Mater. Sci. Eng. A107 (1989) 241. 10.1016/0921-5093(89)90392-4Suche in Google Scholar
[13] K.B.Lee, H.S.Sim, S.Y.Cho, H.Kwon: Metall. Mater. Trans. A32 (2001) 2142. 10.1007/s11661-001-0031-zSuche in Google Scholar
[14] P.M.Singh, J.J.Lewandowsky: Metall. Mater. Trans. A24 (1993) 2531. 10.1007/BF02646532Suche in Google Scholar
[15] Y.Flom, R.J.Arsenault: Acta Metall.37 (1989) 2413. 10.1016/0001-6160(89)90039-4Suche in Google Scholar
[16] I.Kerti, F.Toptan: Mater. Lett.62 (2008) 1215. 10.1016/jmatlet.2007.08.015.Suche in Google Scholar
[17] W.Zhou, Z.M.Xu: J. Mater. Process. Technol.63 (1997) 358. 10.1016/S09240136Suche in Google Scholar
[18] ASTM E8 m: Standard test methods for tensile testing of metallic materials, ASTM International (2004). 10.1520/E0008-04Suche in Google Scholar
[19] A.Baradeswaran, A. ElayaPerumal: Composites Part B54 (2013) 146. 10.1080/10402004.2014.947663Suche in Google Scholar
[20] F.Toptan, A.Kilicarslan, A.Karaaslan, M.Cigdem, I.Kerti: Mater. Des.31 (2010) S87. 10.1016/j.matdes.2009.11.064Suche in Google Scholar
[21] V.Auradi, G.L.Rajesh, S.A.Kori: Procedia Mater. Sci.6 (2014) 1068. 10.1016/j.mspro.2014.07.177Suche in Google Scholar
[22] H.M.Hu, E.J.Lavernia, W.C.Harrigan, J.Kajuch, S.R.Nutt: Mater. Sci. Eng. A297 (2001) 94. 10.1016/S0921-5093(00)01254-5Suche in Google Scholar
[23] K.B.Lee, H.S.Sim, S.Y.Cho, H.Kwon: Mater. Sci. Eng. A302 (2001) 227. 10.1016/S0921-5093(00)01831-1Suche in Google Scholar
[24] J.P.Lucas, J.J.Stephens, F.A.Greulich: Mater. Sci. Eng. A131 (1991) 221. 10.1016/0921-5093(91)90398-7Suche in Google Scholar
[25] J.Kellie, J.Wood: Mater. World3 (1995) 10. 10.1016/0026-0657(95)93612-2.Suche in Google Scholar
[26] I.Topcu, H.O.Gulsoy, N.Kadioglu, A.N.Gulluoglu: J. Alloys Compd.482 (2009) 516. 10.1016/j.jallcom.2009.04.065Suche in Google Scholar
[27] S.Y.Oh, J.A.Cornie, K.C.Russel: Metall. Trans. A20 (1989) 527. 10.1007/BF02653932Suche in Google Scholar
[28] S.Y.Oh, J.A.Cornie, K.C.Russel: Metall. Trans. A20 (1989) 533. 10.1007/BF02653933Suche in Google Scholar
[29] R.M.Mohanty, K.Balasubramaniam, S.K.Seshadri: Mater. Sci. Eng. A498 (2008) 42. 10.1016/j.msea.2007.11.154Suche in Google Scholar
[30] V.A.Katkar, A.G. GunasekaranRao, P.M.Koli: Corros. Sci.53 (2011) 2700. 10.1016/J.corsci.2011.04.023Suche in Google Scholar
[31] G.E.Dieter: Mechanical Metallurgy, McGraw-Hill, Berlin (1976).Suche in Google Scholar
[32] V.Auradi, G.L.Rajesh, S.A.Kori: Mater. Manuf. Processes29 (2) (2014) 194. 10.1016/j.mspro.2014.7.269Suche in Google Scholar
[33] S.Ho, E.J.Lavernia: Appl. Compos. Mater.2 (1995) 1. 10.1007/BF00567374Suche in Google Scholar
[34] Griffith: The phenomena of ruptures and flows in solids, Philos. Trans. R. Soc., London (1920).Suche in Google Scholar
[35] P.K.Ghosh, S.Ray: J. Mater. Sci.21 (1986) 1167. 10.1007/BF00353179Suche in Google Scholar
[36] J.M.McCoy, C.Prones, F.E.Warner: Mater. Sci.1 (1988) 37.Suche in Google Scholar
[37] S.Queyreau, G.Monnet, B.Devincre: Acta Mater.58 (2010) 5586. 10.1016/j.actamat.2010.06.028Suche in Google Scholar
[38] B.G.Park, A.Crosk, A.K.Hellier: Composites Part B39 (2008) 1257. 10.1016/j.compositesb.2008.01.006Suche in Google Scholar
[39] A.M.Maniatty, D.J.Littlewood, J.Lu: J. Eng. Mater. Technol.130 (2008) 021019. 10.1115/1.2884338Suche in Google Scholar
© 2016, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Microstructural evolution and creep of Fe–Al–Ta alloys
- Creep behaviour characterisation of a ferritic steel alloy based on the modified theta-projection data at an elevated temperature
- Facile fabrication, microstructure, and corrosion resistance of high-strength, high-hardness pure bulk aluminum
- A method for improving the mechanical properties of a hypereutectic Al–Si alloy by introducing the α-Al phase
- Experimental investigation by atomic force microscopy on mechanical and tribological properties of thin films
- Influence of ceramic B4C particulate addition on tensile behavior of 6061 aluminum matrix
- Role of cerium, lanthanum, and strontium additions in an Al – Si – Mg (A356) alloy
- Structural and mechanical study on Mg–xLM (x = 0–5 wt.%, LM = Sn, Ga) alloys
- Weibull distribution application on temperature dependence of polyurethane storage modulus
- Hierarchical bismuth phosphate microspheres with high photocatalytic performance
- Influence of calcination temperature on sol–gel synthesized single-phase bismuth titanate for high dielectric capacitor applications
- People
- Prof. Dr. Wolfgang Bleck on the occasion of his 65th birthday
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Microstructural evolution and creep of Fe–Al–Ta alloys
- Creep behaviour characterisation of a ferritic steel alloy based on the modified theta-projection data at an elevated temperature
- Facile fabrication, microstructure, and corrosion resistance of high-strength, high-hardness pure bulk aluminum
- A method for improving the mechanical properties of a hypereutectic Al–Si alloy by introducing the α-Al phase
- Experimental investigation by atomic force microscopy on mechanical and tribological properties of thin films
- Influence of ceramic B4C particulate addition on tensile behavior of 6061 aluminum matrix
- Role of cerium, lanthanum, and strontium additions in an Al – Si – Mg (A356) alloy
- Structural and mechanical study on Mg–xLM (x = 0–5 wt.%, LM = Sn, Ga) alloys
- Weibull distribution application on temperature dependence of polyurethane storage modulus
- Hierarchical bismuth phosphate microspheres with high photocatalytic performance
- Influence of calcination temperature on sol–gel synthesized single-phase bismuth titanate for high dielectric capacitor applications
- People
- Prof. Dr. Wolfgang Bleck on the occasion of his 65th birthday
- DGM News
- DGM News