Microstructural evolution and creep of Fe–Al–Ta alloys
-
Petra Prokopčáková
Abstract
The microstructural evolution in Fe – Al – Ta alloys containing 23 – 31 at.% Al and 1.5 – 2.2 at.% Ta has been studied in the temperature range 650 – 750 °C by annealing for 1, 10, 100 and 1 000 h. The experiments confirm that in this temperature range the precipitation of the stable hexagonal C14 Laves phase is preceded by formation of coherent, metastable L21 Heusler phase precipitates within the Fe – Al matrix. However, precipitates of C14 are observed after much shorter annealing times than previously assumed. Creep strength increases substantially with increasing Al content of the alloys because the solid solubility for Ta in the Fe – Al matrix increases with increasing Al content and solid-solution hardening contributes substantially to the observed high creep strength. It may therefore be that the microstructural changes during creep have no noticeable effect on creep strength.
References
[1] E.M.Savitskii, V.F.Terekhova, I.V.Burov: Met. Sci. Heat Treat.1 (1959) 43. 10.1007/BF00813845Suche in Google Scholar
[2] J.F.Nachman, W.J.Buehler: J. Appl. Phys.25 (1954) 307. 10.1063/1.1721631Suche in Google Scholar
[3] R.A.Hadfield: J. Iron Steel Inst.2 (1890) 161.Suche in Google Scholar
[4] D.Hardwick, G.Wallwork: Rev. High Temp. Mater.4 (1978) 47.Suche in Google Scholar
[5] N.S.Stoloff: Mater. Sci. Eng. A258 (1998) 1. 10.1016/S0921-5093(98)00909-5Suche in Google Scholar
[6] S.Chowdhuri, S.S.Joshi, P.K.Rao, N.B.Ballal: J. Mater. Process. Technol.147 (2004) 131. 10.1016/j.jmatprotec.2003.12.007Suche in Google Scholar
[7] T.Sasaki, T.Yakou: JSME Int. J., Series C, 49 (2006) 334. 10.1299/jsmec.49.334Suche in Google Scholar
[8] L.Liu, H.Shao, L.X.Huang: J. Mater. Process. Technol.209 (2009) 4509. 10.1016/j.jmatprotec.2008.10.014Suche in Google Scholar
[9] J.Köhler, A.Moral, B.Denkena: Procedia CIRP9 (2013) 2. 10.1016/j.procir.2013.06.158Suche in Google Scholar
[10] B.Denkena, J.-H.Stiffel, E.Hasselberg, D.Nespor: Prod. Eng.8 (2014) 273. 10.1007/s11740-013-0520-0Suche in Google Scholar
[11] M.G.Mendiratta, S.K.Ehlers, D.M.Dimiduk, W.R.Kerr, S.Mazdiyasni, H.A.Lipsitt: Mater. Res. Soc. Symp. Proc.81 (1987) 393. 10.1557/PROC-81-393Suche in Google Scholar
[12] D.G.Morris, M.A.Munoz-Morris: Mater. Sci. Eng. A462 (2007) 45. 10.1016/j.msea.2005.10.083Suche in Google Scholar
[13] D.G.Morris: Intermetallics6 (1998) 753. 10.1016/S0966-9795(98)00028-4Suche in Google Scholar
[14] M.Palm: Intermetallics13 (2005) 1286. 10.1016/j.intermet.2004.10.015Suche in Google Scholar
[15] M.Palm, A.Schneider, F.Stein, G.Sauthoff: Mater. Res. Soc. Symp. Proc.842 (2005) 3.Suche in Google Scholar
[16] D.D.Risanti, G.Sauthoff: Intermetallics19 (2011) 1727. 10.1016/j.intermet.2011.07.008Suche in Google Scholar
[17] D.M.Dimiduk, M.G.Mendiratta, D.Banerjee, H.A.Lipsitt: Acta Metall.36 (1988) 2947. 10.1016/0001-6160(88)90177-0Suche in Google Scholar
[18] D.G.Morris, L.M.Requejo, M.A.Munoz-Morris: Intermetallics13 (2005) 862. 10.1016/j.intermet.2005.01.008Suche in Google Scholar
[19] D.G.Morris, M.A.Munoz-Morris, L.M.Requejo, C.Baudin: Intermetallics14 (2006). 10.1016/j.intermet.2005.10.015Suche in Google Scholar
[20] D.G.Morris, L.M.Requejo, M.A.Munoz-Morris: Scr. Mater.54 (2006) 393. 10.1016/j.scriptamat.2005.10.022Suche in Google Scholar
[21] R.Krein, M.Palm, M.Heilmaier: J. Mater. Res.24 (2009) 3412. 10.1557/JMR.2009.0403Suche in Google Scholar
[22] L.Sencekova, M.Palm, J.Pesicka, J.Vesely: Intermetallics, submitted.Suche in Google Scholar
[23] S.M.Hao, T.Takayama, K.Ishida, T.Nishizawa: Metall. Trans. A15 (1984) 1819. 10.1007/BF02664895Suche in Google Scholar
[24] I.Jung, G.Sauthoff: Z. Metallkd.80 (1989) 484.Suche in Google Scholar
[25] C.Stallybrass, G.Sauthoff: Mater. Sci. Eng. A387–389 (2004) 985. 10.1016/j.msea.2004.01.108Suche in Google Scholar
[26] C.Stallybrass, A.Schneider, G.Sauthoff: Intermetallics13 (2005) 1263. 10.1016/j.intermet.2004.07.048Suche in Google Scholar
[27] J.A.Hanna, I.Baker, W.Wittmann, P.R.Munroe: J. Mater. Res.20 (2005) 791. 10.1557/JMR.2005.0136Suche in Google Scholar
[28] I.Baker, R.K.Zheng, D.W.Saxey, S.Kuwano, M.W.Wittmann, J.A.Loudis, K.S.Prasad, Z.Liu, R.Marceau, P.R.Munroe, S.P.Ringer: Intermetallics17 (2009) 886. 10.1016/j.intermet.2009.03.016Suche in Google Scholar
[29] I.Baker, H.Wu, X.Wu, M.K.Miller, P.R.Munroe: Mater. Charact.62 (2011) 952. 10.1016/j.matchar.2011.07.009Suche in Google Scholar
[30] P.Janschek, K.Bauer-Partenheimer, R.Krein, P.Hanus, M.Palm: Mater. Res. Soc. Symp. Proc.1128 (2009) 47–52. 10.1557/PROC-1128-U02-02Suche in Google Scholar
[31] P.Hanus, E.Bartsch, M.Palm, R.Krein, K.Bauer-Partenheimer, P.Janschek: Intermetallics18 (2010) 1379. 10.1016/j.intermet.2009.12.035Suche in Google Scholar
[32] M.Palm, R.Krein, S.Milenkovic, G.Sauthoff, D.Risanti, C.Stallybrass, A.Schneider: Mater. Res. Soc. Symp. Proc.980 (2007) II01–01. 10.1017/PROC-980-0980-II01-01Suche in Google Scholar
[33] D.D.Risanti, G.Sauthoff: Mater. Sci. Forum475–479 (2005) 865.Suche in Google Scholar
[34] D.D.Risanti, G.Sauthoff: Intermetallics13 (2005) 1313. 10.1016/j.intermet.2004.12.029Suche in Google Scholar
[35] D.D.Risanti: PhD Thesis, RWTH Aachen, Shaker Verlag Aachen (2010) 1–141.Suche in Google Scholar
[36] D.A.Porter, K.E.Easterling: Phase Transformations in Metals and Alloys, Van Nostrand-Reinhold (UK), Workingham (1981).Suche in Google Scholar
[37] M.Nishijima, K.Hiraga, M.Yamasaki, Y.Kawamura: Mater. Trans., JIM49 (2008) 227. 10.2320/matertrans.MEP2007257Suche in Google Scholar
[38] M.G.Mendiratta, S.K.Ehlers, H.A.Lipsitt: Metall. Trans. A18 (1987) 509. 10.1007/BF02649468Suche in Google Scholar
[39] V.T.Witusiewicz, A.A.Bondar, U.Hecht, V.M.Voblikov, N.I.Tsyganenko, O.S.Fomichov, M.V.Karpets, V.M.Petyukh, T.Y.Velikanova: J. Mater. Sci.48 (2013) 377. 10.1007/s10853-012-6755-xSuche in Google Scholar
[40] G.Culbertson, C.S.Kortovich: AF Wright Aeronautical Laboratories Rep. AFWAL-TR-85 4155 (1986) pp. 1–149.Suche in Google Scholar
[41] M.Palm, J.Lacaze: Intermetallics14 (2006) 1291. 10.1016/j.intermet.2005.11.026Suche in Google Scholar
[42] T.Maebashi, T.Kozakai, M.Doi: Z. Metallkd.95 (2004) 1005. 10.3139/146.018048Suche in Google Scholar
[43] P.R.Alonso, P.H.Gargano, P.B.Bozzano, G.E.Ramirez-Caballero, P.B.Balbuena, G.H.Rubiolo: Intermetallics19 (2011) 1157. 10.1016/j.intermet.2011.03.025Suche in Google Scholar
[44] H.Ackermann: PhD Thesis, Fachbereich Chemietechnik, Universität Dortmund (1988) 1–193.Suche in Google Scholar
[45] F.Stein, M.Palm: Int. J. Mater. Res.98 (2007) 580. 10.3139/146.101512Suche in Google Scholar
[46] G.Sauthoff, in: J.H.Westbrook, R.L.Fleischer (Eds.), Intermetallic Compounds, John Wiley & Sons, Chichester (1995) 911. 10.1002/9783527615414Suche in Google Scholar
[47] A.Lawley, J.A.Coll, R.W.Cahn: Trans. Metall. Soc. AIME, 218 (1960) 166.Suche in Google Scholar
[48] J.D.Whittenberger: Mater. Sci. Eng.77 (1986) 103. 10.1016/0025-5416(86)90358-7Suche in Google Scholar
[49] D.H.Sastry, R.S.Sundar, in: S.C.Deevi, P.J.Maziasz, V.K.Sikka, R.W.Cahn (Eds.), Int. Symp. Nickel and Iron Aluminides: Processing, Properties, and Applications, ASM International (1997) 123.Suche in Google Scholar
© 2016, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Microstructural evolution and creep of Fe–Al–Ta alloys
- Creep behaviour characterisation of a ferritic steel alloy based on the modified theta-projection data at an elevated temperature
- Facile fabrication, microstructure, and corrosion resistance of high-strength, high-hardness pure bulk aluminum
- A method for improving the mechanical properties of a hypereutectic Al–Si alloy by introducing the α-Al phase
- Experimental investigation by atomic force microscopy on mechanical and tribological properties of thin films
- Influence of ceramic B4C particulate addition on tensile behavior of 6061 aluminum matrix
- Role of cerium, lanthanum, and strontium additions in an Al – Si – Mg (A356) alloy
- Structural and mechanical study on Mg–xLM (x = 0–5 wt.%, LM = Sn, Ga) alloys
- Weibull distribution application on temperature dependence of polyurethane storage modulus
- Hierarchical bismuth phosphate microspheres with high photocatalytic performance
- Influence of calcination temperature on sol–gel synthesized single-phase bismuth titanate for high dielectric capacitor applications
- People
- Prof. Dr. Wolfgang Bleck on the occasion of his 65th birthday
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Microstructural evolution and creep of Fe–Al–Ta alloys
- Creep behaviour characterisation of a ferritic steel alloy based on the modified theta-projection data at an elevated temperature
- Facile fabrication, microstructure, and corrosion resistance of high-strength, high-hardness pure bulk aluminum
- A method for improving the mechanical properties of a hypereutectic Al–Si alloy by introducing the α-Al phase
- Experimental investigation by atomic force microscopy on mechanical and tribological properties of thin films
- Influence of ceramic B4C particulate addition on tensile behavior of 6061 aluminum matrix
- Role of cerium, lanthanum, and strontium additions in an Al – Si – Mg (A356) alloy
- Structural and mechanical study on Mg–xLM (x = 0–5 wt.%, LM = Sn, Ga) alloys
- Weibull distribution application on temperature dependence of polyurethane storage modulus
- Hierarchical bismuth phosphate microspheres with high photocatalytic performance
- Influence of calcination temperature on sol–gel synthesized single-phase bismuth titanate for high dielectric capacitor applications
- People
- Prof. Dr. Wolfgang Bleck on the occasion of his 65th birthday
- DGM News
- DGM News