Microstructural evolution and creep of Fe–Al–Ta alloys
-
Petra Prokopčáková
Abstract
The microstructural evolution in Fe – Al – Ta alloys containing 23 – 31 at.% Al and 1.5 – 2.2 at.% Ta has been studied in the temperature range 650 – 750 °C by annealing for 1, 10, 100 and 1 000 h. The experiments confirm that in this temperature range the precipitation of the stable hexagonal C14 Laves phase is preceded by formation of coherent, metastable L21 Heusler phase precipitates within the Fe – Al matrix. However, precipitates of C14 are observed after much shorter annealing times than previously assumed. Creep strength increases substantially with increasing Al content of the alloys because the solid solubility for Ta in the Fe – Al matrix increases with increasing Al content and solid-solution hardening contributes substantially to the observed high creep strength. It may therefore be that the microstructural changes during creep have no noticeable effect on creep strength.
References
[1] E.M.Savitskii, V.F.Terekhova, I.V.Burov: Met. Sci. Heat Treat.1 (1959) 43. 10.1007/BF00813845Search in Google Scholar
[2] J.F.Nachman, W.J.Buehler: J. Appl. Phys.25 (1954) 307. 10.1063/1.1721631Search in Google Scholar
[3] R.A.Hadfield: J. Iron Steel Inst.2 (1890) 161.Search in Google Scholar
[4] D.Hardwick, G.Wallwork: Rev. High Temp. Mater.4 (1978) 47.Search in Google Scholar
[5] N.S.Stoloff: Mater. Sci. Eng. A258 (1998) 1. 10.1016/S0921-5093(98)00909-5Search in Google Scholar
[6] S.Chowdhuri, S.S.Joshi, P.K.Rao, N.B.Ballal: J. Mater. Process. Technol.147 (2004) 131. 10.1016/j.jmatprotec.2003.12.007Search in Google Scholar
[7] T.Sasaki, T.Yakou: JSME Int. J., Series C, 49 (2006) 334. 10.1299/jsmec.49.334Search in Google Scholar
[8] L.Liu, H.Shao, L.X.Huang: J. Mater. Process. Technol.209 (2009) 4509. 10.1016/j.jmatprotec.2008.10.014Search in Google Scholar
[9] J.Köhler, A.Moral, B.Denkena: Procedia CIRP9 (2013) 2. 10.1016/j.procir.2013.06.158Search in Google Scholar
[10] B.Denkena, J.-H.Stiffel, E.Hasselberg, D.Nespor: Prod. Eng.8 (2014) 273. 10.1007/s11740-013-0520-0Search in Google Scholar
[11] M.G.Mendiratta, S.K.Ehlers, D.M.Dimiduk, W.R.Kerr, S.Mazdiyasni, H.A.Lipsitt: Mater. Res. Soc. Symp. Proc.81 (1987) 393. 10.1557/PROC-81-393Search in Google Scholar
[12] D.G.Morris, M.A.Munoz-Morris: Mater. Sci. Eng. A462 (2007) 45. 10.1016/j.msea.2005.10.083Search in Google Scholar
[13] D.G.Morris: Intermetallics6 (1998) 753. 10.1016/S0966-9795(98)00028-4Search in Google Scholar
[14] M.Palm: Intermetallics13 (2005) 1286. 10.1016/j.intermet.2004.10.015Search in Google Scholar
[15] M.Palm, A.Schneider, F.Stein, G.Sauthoff: Mater. Res. Soc. Symp. Proc.842 (2005) 3.Search in Google Scholar
[16] D.D.Risanti, G.Sauthoff: Intermetallics19 (2011) 1727. 10.1016/j.intermet.2011.07.008Search in Google Scholar
[17] D.M.Dimiduk, M.G.Mendiratta, D.Banerjee, H.A.Lipsitt: Acta Metall.36 (1988) 2947. 10.1016/0001-6160(88)90177-0Search in Google Scholar
[18] D.G.Morris, L.M.Requejo, M.A.Munoz-Morris: Intermetallics13 (2005) 862. 10.1016/j.intermet.2005.01.008Search in Google Scholar
[19] D.G.Morris, M.A.Munoz-Morris, L.M.Requejo, C.Baudin: Intermetallics14 (2006). 10.1016/j.intermet.2005.10.015Search in Google Scholar
[20] D.G.Morris, L.M.Requejo, M.A.Munoz-Morris: Scr. Mater.54 (2006) 393. 10.1016/j.scriptamat.2005.10.022Search in Google Scholar
[21] R.Krein, M.Palm, M.Heilmaier: J. Mater. Res.24 (2009) 3412. 10.1557/JMR.2009.0403Search in Google Scholar
[22] L.Sencekova, M.Palm, J.Pesicka, J.Vesely: Intermetallics, submitted.Search in Google Scholar
[23] S.M.Hao, T.Takayama, K.Ishida, T.Nishizawa: Metall. Trans. A15 (1984) 1819. 10.1007/BF02664895Search in Google Scholar
[24] I.Jung, G.Sauthoff: Z. Metallkd.80 (1989) 484.Search in Google Scholar
[25] C.Stallybrass, G.Sauthoff: Mater. Sci. Eng. A387–389 (2004) 985. 10.1016/j.msea.2004.01.108Search in Google Scholar
[26] C.Stallybrass, A.Schneider, G.Sauthoff: Intermetallics13 (2005) 1263. 10.1016/j.intermet.2004.07.048Search in Google Scholar
[27] J.A.Hanna, I.Baker, W.Wittmann, P.R.Munroe: J. Mater. Res.20 (2005) 791. 10.1557/JMR.2005.0136Search in Google Scholar
[28] I.Baker, R.K.Zheng, D.W.Saxey, S.Kuwano, M.W.Wittmann, J.A.Loudis, K.S.Prasad, Z.Liu, R.Marceau, P.R.Munroe, S.P.Ringer: Intermetallics17 (2009) 886. 10.1016/j.intermet.2009.03.016Search in Google Scholar
[29] I.Baker, H.Wu, X.Wu, M.K.Miller, P.R.Munroe: Mater. Charact.62 (2011) 952. 10.1016/j.matchar.2011.07.009Search in Google Scholar
[30] P.Janschek, K.Bauer-Partenheimer, R.Krein, P.Hanus, M.Palm: Mater. Res. Soc. Symp. Proc.1128 (2009) 47–52. 10.1557/PROC-1128-U02-02Search in Google Scholar
[31] P.Hanus, E.Bartsch, M.Palm, R.Krein, K.Bauer-Partenheimer, P.Janschek: Intermetallics18 (2010) 1379. 10.1016/j.intermet.2009.12.035Search in Google Scholar
[32] M.Palm, R.Krein, S.Milenkovic, G.Sauthoff, D.Risanti, C.Stallybrass, A.Schneider: Mater. Res. Soc. Symp. Proc.980 (2007) II01–01. 10.1017/PROC-980-0980-II01-01Search in Google Scholar
[33] D.D.Risanti, G.Sauthoff: Mater. Sci. Forum475–479 (2005) 865.Search in Google Scholar
[34] D.D.Risanti, G.Sauthoff: Intermetallics13 (2005) 1313. 10.1016/j.intermet.2004.12.029Search in Google Scholar
[35] D.D.Risanti: PhD Thesis, RWTH Aachen, Shaker Verlag Aachen (2010) 1–141.Search in Google Scholar
[36] D.A.Porter, K.E.Easterling: Phase Transformations in Metals and Alloys, Van Nostrand-Reinhold (UK), Workingham (1981).Search in Google Scholar
[37] M.Nishijima, K.Hiraga, M.Yamasaki, Y.Kawamura: Mater. Trans., JIM49 (2008) 227. 10.2320/matertrans.MEP2007257Search in Google Scholar
[38] M.G.Mendiratta, S.K.Ehlers, H.A.Lipsitt: Metall. Trans. A18 (1987) 509. 10.1007/BF02649468Search in Google Scholar
[39] V.T.Witusiewicz, A.A.Bondar, U.Hecht, V.M.Voblikov, N.I.Tsyganenko, O.S.Fomichov, M.V.Karpets, V.M.Petyukh, T.Y.Velikanova: J. Mater. Sci.48 (2013) 377. 10.1007/s10853-012-6755-xSearch in Google Scholar
[40] G.Culbertson, C.S.Kortovich: AF Wright Aeronautical Laboratories Rep. AFWAL-TR-85 4155 (1986) pp. 1–149.Search in Google Scholar
[41] M.Palm, J.Lacaze: Intermetallics14 (2006) 1291. 10.1016/j.intermet.2005.11.026Search in Google Scholar
[42] T.Maebashi, T.Kozakai, M.Doi: Z. Metallkd.95 (2004) 1005. 10.3139/146.018048Search in Google Scholar
[43] P.R.Alonso, P.H.Gargano, P.B.Bozzano, G.E.Ramirez-Caballero, P.B.Balbuena, G.H.Rubiolo: Intermetallics19 (2011) 1157. 10.1016/j.intermet.2011.03.025Search in Google Scholar
[44] H.Ackermann: PhD Thesis, Fachbereich Chemietechnik, Universität Dortmund (1988) 1–193.Search in Google Scholar
[45] F.Stein, M.Palm: Int. J. Mater. Res.98 (2007) 580. 10.3139/146.101512Search in Google Scholar
[46] G.Sauthoff, in: J.H.Westbrook, R.L.Fleischer (Eds.), Intermetallic Compounds, John Wiley & Sons, Chichester (1995) 911. 10.1002/9783527615414Search in Google Scholar
[47] A.Lawley, J.A.Coll, R.W.Cahn: Trans. Metall. Soc. AIME, 218 (1960) 166.Search in Google Scholar
[48] J.D.Whittenberger: Mater. Sci. Eng.77 (1986) 103. 10.1016/0025-5416(86)90358-7Search in Google Scholar
[49] D.H.Sastry, R.S.Sundar, in: S.C.Deevi, P.J.Maziasz, V.K.Sikka, R.W.Cahn (Eds.), Int. Symp. Nickel and Iron Aluminides: Processing, Properties, and Applications, ASM International (1997) 123.Search in Google Scholar
© 2016, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Microstructural evolution and creep of Fe–Al–Ta alloys
- Creep behaviour characterisation of a ferritic steel alloy based on the modified theta-projection data at an elevated temperature
- Facile fabrication, microstructure, and corrosion resistance of high-strength, high-hardness pure bulk aluminum
- A method for improving the mechanical properties of a hypereutectic Al–Si alloy by introducing the α-Al phase
- Experimental investigation by atomic force microscopy on mechanical and tribological properties of thin films
- Influence of ceramic B4C particulate addition on tensile behavior of 6061 aluminum matrix
- Role of cerium, lanthanum, and strontium additions in an Al – Si – Mg (A356) alloy
- Structural and mechanical study on Mg–xLM (x = 0–5 wt.%, LM = Sn, Ga) alloys
- Weibull distribution application on temperature dependence of polyurethane storage modulus
- Hierarchical bismuth phosphate microspheres with high photocatalytic performance
- Influence of calcination temperature on sol–gel synthesized single-phase bismuth titanate for high dielectric capacitor applications
- People
- Prof. Dr. Wolfgang Bleck on the occasion of his 65th birthday
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Microstructural evolution and creep of Fe–Al–Ta alloys
- Creep behaviour characterisation of a ferritic steel alloy based on the modified theta-projection data at an elevated temperature
- Facile fabrication, microstructure, and corrosion resistance of high-strength, high-hardness pure bulk aluminum
- A method for improving the mechanical properties of a hypereutectic Al–Si alloy by introducing the α-Al phase
- Experimental investigation by atomic force microscopy on mechanical and tribological properties of thin films
- Influence of ceramic B4C particulate addition on tensile behavior of 6061 aluminum matrix
- Role of cerium, lanthanum, and strontium additions in an Al – Si – Mg (A356) alloy
- Structural and mechanical study on Mg–xLM (x = 0–5 wt.%, LM = Sn, Ga) alloys
- Weibull distribution application on temperature dependence of polyurethane storage modulus
- Hierarchical bismuth phosphate microspheres with high photocatalytic performance
- Influence of calcination temperature on sol–gel synthesized single-phase bismuth titanate for high dielectric capacitor applications
- People
- Prof. Dr. Wolfgang Bleck on the occasion of his 65th birthday
- DGM News
- DGM News