Home Microstructural evolution and creep of Fe–Al–Ta alloys
Article
Licensed
Unlicensed Requires Authentication

Microstructural evolution and creep of Fe–Al–Ta alloys

  • Petra Prokopčáková , Martin Švec and Martin Palm
Published/Copyright: April 30, 2016
Become an author with De Gruyter Brill

Abstract

The microstructural evolution in Fe – Al – Ta alloys containing 23 – 31 at.% Al and 1.5 – 2.2 at.% Ta has been studied in the temperature range 650 – 750 °C by annealing for 1, 10, 100 and 1 000 h. The experiments confirm that in this temperature range the precipitation of the stable hexagonal C14 Laves phase is preceded by formation of coherent, metastable L21 Heusler phase precipitates within the Fe – Al matrix. However, precipitates of C14 are observed after much shorter annealing times than previously assumed. Creep strength increases substantially with increasing Al content of the alloys because the solid solubility for Ta in the Fe – Al matrix increases with increasing Al content and solid-solution hardening contributes substantially to the observed high creep strength. It may therefore be that the microstructural changes during creep have no noticeable effect on creep strength.


*Correspondence address, Dr. Martin Palm, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Düsseldorf, Germany. Tel.: +49(0)211 6792-226, Fax: +49(0)211 6792-360, E-mail:

References

[1] E.M.Savitskii, V.F.Terekhova, I.V.Burov: Met. Sci. Heat Treat.1 (1959) 43. 10.1007/BF00813845Search in Google Scholar

[2] J.F.Nachman, W.J.Buehler: J. Appl. Phys.25 (1954) 307. 10.1063/1.1721631Search in Google Scholar

[3] R.A.Hadfield: J. Iron Steel Inst.2 (1890) 161.Search in Google Scholar

[4] D.Hardwick, G.Wallwork: Rev. High Temp. Mater.4 (1978) 47.Search in Google Scholar

[5] N.S.Stoloff: Mater. Sci. Eng. A258 (1998) 1. 10.1016/S0921-5093(98)00909-5Search in Google Scholar

[6] S.Chowdhuri, S.S.Joshi, P.K.Rao, N.B.Ballal: J. Mater. Process. Technol.147 (2004) 131. 10.1016/j.jmatprotec.2003.12.007Search in Google Scholar

[7] T.Sasaki, T.Yakou: JSME Int. J., Series C, 49 (2006) 334. 10.1299/jsmec.49.334Search in Google Scholar

[8] L.Liu, H.Shao, L.X.Huang: J. Mater. Process. Technol.209 (2009) 4509. 10.1016/j.jmatprotec.2008.10.014Search in Google Scholar

[9] J.Köhler, A.Moral, B.Denkena: Procedia CIRP9 (2013) 2. 10.1016/j.procir.2013.06.158Search in Google Scholar

[10] B.Denkena, J.-H.Stiffel, E.Hasselberg, D.Nespor: Prod. Eng.8 (2014) 273. 10.1007/s11740-013-0520-0Search in Google Scholar

[11] M.G.Mendiratta, S.K.Ehlers, D.M.Dimiduk, W.R.Kerr, S.Mazdiyasni, H.A.Lipsitt: Mater. Res. Soc. Symp. Proc.81 (1987) 393. 10.1557/PROC-81-393Search in Google Scholar

[12] D.G.Morris, M.A.Munoz-Morris: Mater. Sci. Eng. A462 (2007) 45. 10.1016/j.msea.2005.10.083Search in Google Scholar

[13] D.G.Morris: Intermetallics6 (1998) 753. 10.1016/S0966-9795(98)00028-4Search in Google Scholar

[14] M.Palm: Intermetallics13 (2005) 1286. 10.1016/j.intermet.2004.10.015Search in Google Scholar

[15] M.Palm, A.Schneider, F.Stein, G.Sauthoff: Mater. Res. Soc. Symp. Proc.842 (2005) 3.Search in Google Scholar

[16] D.D.Risanti, G.Sauthoff: Intermetallics19 (2011) 1727. 10.1016/j.intermet.2011.07.008Search in Google Scholar

[17] D.M.Dimiduk, M.G.Mendiratta, D.Banerjee, H.A.Lipsitt: Acta Metall.36 (1988) 2947. 10.1016/0001-6160(88)90177-0Search in Google Scholar

[18] D.G.Morris, L.M.Requejo, M.A.Munoz-Morris: Intermetallics13 (2005) 862. 10.1016/j.intermet.2005.01.008Search in Google Scholar

[19] D.G.Morris, M.A.Munoz-Morris, L.M.Requejo, C.Baudin: Intermetallics14 (2006). 10.1016/j.intermet.2005.10.015Search in Google Scholar

[20] D.G.Morris, L.M.Requejo, M.A.Munoz-Morris: Scr. Mater.54 (2006) 393. 10.1016/j.scriptamat.2005.10.022Search in Google Scholar

[21] R.Krein, M.Palm, M.Heilmaier: J. Mater. Res.24 (2009) 3412. 10.1557/JMR.2009.0403Search in Google Scholar

[22] L.Sencekova, M.Palm, J.Pesicka, J.Vesely: Intermetallics, submitted.Search in Google Scholar

[23] S.M.Hao, T.Takayama, K.Ishida, T.Nishizawa: Metall. Trans. A15 (1984) 1819. 10.1007/BF02664895Search in Google Scholar

[24] I.Jung, G.Sauthoff: Z. Metallkd.80 (1989) 484.Search in Google Scholar

[25] C.Stallybrass, G.Sauthoff: Mater. Sci. Eng. A387–389 (2004) 985. 10.1016/j.msea.2004.01.108Search in Google Scholar

[26] C.Stallybrass, A.Schneider, G.Sauthoff: Intermetallics13 (2005) 1263. 10.1016/j.intermet.2004.07.048Search in Google Scholar

[27] J.A.Hanna, I.Baker, W.Wittmann, P.R.Munroe: J. Mater. Res.20 (2005) 791. 10.1557/JMR.2005.0136Search in Google Scholar

[28] I.Baker, R.K.Zheng, D.W.Saxey, S.Kuwano, M.W.Wittmann, J.A.Loudis, K.S.Prasad, Z.Liu, R.Marceau, P.R.Munroe, S.P.Ringer: Intermetallics17 (2009) 886. 10.1016/j.intermet.2009.03.016Search in Google Scholar

[29] I.Baker, H.Wu, X.Wu, M.K.Miller, P.R.Munroe: Mater. Charact.62 (2011) 952. 10.1016/j.matchar.2011.07.009Search in Google Scholar

[30] P.Janschek, K.Bauer-Partenheimer, R.Krein, P.Hanus, M.Palm: Mater. Res. Soc. Symp. Proc.1128 (2009) 4752. 10.1557/PROC-1128-U02-02Search in Google Scholar

[31] P.Hanus, E.Bartsch, M.Palm, R.Krein, K.Bauer-Partenheimer, P.Janschek: Intermetallics18 (2010) 1379. 10.1016/j.intermet.2009.12.035Search in Google Scholar

[32] M.Palm, R.Krein, S.Milenkovic, G.Sauthoff, D.Risanti, C.Stallybrass, A.Schneider: Mater. Res. Soc. Symp. Proc.980 (2007) II0101. 10.1017/PROC-980-0980-II01-01Search in Google Scholar

[33] D.D.Risanti, G.Sauthoff: Mater. Sci. Forum475–479 (2005) 865.Search in Google Scholar

[34] D.D.Risanti, G.Sauthoff: Intermetallics13 (2005) 1313. 10.1016/j.intermet.2004.12.029Search in Google Scholar

[35] D.D.Risanti: PhD Thesis, RWTH Aachen, Shaker Verlag Aachen (2010) 1141.Search in Google Scholar

[36] D.A.Porter, K.E.Easterling: Phase Transformations in Metals and Alloys, Van Nostrand-Reinhold (UK), Workingham (1981).Search in Google Scholar

[37] M.Nishijima, K.Hiraga, M.Yamasaki, Y.Kawamura: Mater. Trans., JIM49 (2008) 227. 10.2320/matertrans.MEP2007257Search in Google Scholar

[38] M.G.Mendiratta, S.K.Ehlers, H.A.Lipsitt: Metall. Trans. A18 (1987) 509. 10.1007/BF02649468Search in Google Scholar

[39] V.T.Witusiewicz, A.A.Bondar, U.Hecht, V.M.Voblikov, N.I.Tsyganenko, O.S.Fomichov, M.V.Karpets, V.M.Petyukh, T.Y.Velikanova: J. Mater. Sci.48 (2013) 377. 10.1007/s10853-012-6755-xSearch in Google Scholar

[40] G.Culbertson, C.S.Kortovich: AF Wright Aeronautical Laboratories Rep. AFWAL-TR-85 4155 (1986) pp. 1149.Search in Google Scholar

[41] M.Palm, J.Lacaze: Intermetallics14 (2006) 1291. 10.1016/j.intermet.2005.11.026Search in Google Scholar

[42] T.Maebashi, T.Kozakai, M.Doi: Z. Metallkd.95 (2004) 1005. 10.3139/146.018048Search in Google Scholar

[43] P.R.Alonso, P.H.Gargano, P.B.Bozzano, G.E.Ramirez-Caballero, P.B.Balbuena, G.H.Rubiolo: Intermetallics19 (2011) 1157. 10.1016/j.intermet.2011.03.025Search in Google Scholar

[44] H.Ackermann: PhD Thesis, Fachbereich Chemietechnik, Universität Dortmund (1988) 1193.Search in Google Scholar

[45] F.Stein, M.Palm: Int. J. Mater. Res.98 (2007) 580. 10.3139/146.101512Search in Google Scholar

[46] G.Sauthoff, in: J.H.Westbrook, R.L.Fleischer (Eds.), Intermetallic Compounds, John Wiley & Sons, Chichester (1995) 911. 10.1002/9783527615414Search in Google Scholar

[47] A.Lawley, J.A.Coll, R.W.Cahn: Trans. Metall. Soc. AIME, 218 (1960) 166.Search in Google Scholar

[48] J.D.Whittenberger: Mater. Sci. Eng.77 (1986) 103. 10.1016/0025-5416(86)90358-7Search in Google Scholar

[49] D.H.Sastry, R.S.Sundar, in: S.C.Deevi, P.J.Maziasz, V.K.Sikka, R.W.Cahn (Eds.), Int. Symp. Nickel and Iron Aluminides: Processing, Properties, and Applications, ASM International (1997) 123.Search in Google Scholar

Received: 2015-10-20
Accepted: 2016-02-01
Published Online: 2016-04-30
Published in Print: 2016-05-13

© 2016, Carl Hanser Verlag, München

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111357/html
Scroll to top button