Creep behaviour characterisation of a ferritic steel alloy based on the modified theta-projection data at an elevated temperature
-
Roozbeh Alipour
Abstract
This paper establishes and examines the constitutive model of the modified theta-projection concept for predicting the creep-rupture behaviour of a 2.25Cr-1Mo ferritic steel alloy foil at the loading conditions of practical interest. For this purpose, a series of creep-rupture tests are conducted on 0.15 mm thick foil specimens at an elevated temperature of 1 027 K and applied stresses in the range of 90 – 210 MPa. The creep-rupture behaviour of the foil is well represented using the model of the modified three-parameter theta-projection concept. Each model parameter is well represented as a function of the applied stress. Moreover, the creep failure mechanism was analysed by means of field emission scanning electron microscopy. The results showed that chromium atoms diffuse to the grain boundary and form carbide precipitates at the elevated temperature, leading to inter-granular fracture in the material.
References
[1] S.Zhu, M.Yang, X.L.Song, Z.Zhang, L.B.Wang, S.Tang, Z.D.Xiang: Mater. Sci. Eng. A619 (2014) 47–56. 10.1016/j.msea.2014.09.059Search in Google Scholar
[2] Y.Wen, Y.Liu, D.Liu, B.Tang, C.Liu: Int. J. Mater. Res.102 (2011) 160–167. 10.3139/146.110462Search in Google Scholar
[3] S.Goyal, K.Laha: Mater. Sci. Eng. A615 (2014) 348–360. 10.1016/j.msea.2014.07.096Search in Google Scholar
[4] P.Seiler, M.Bäker, J.Rösler: Int. J. Mater. Res.103 (2012) 50–56. 10.3139/146.110629Search in Google Scholar
[5] D.Sturm, M.Heilmaier, H.Saage, J.Aguilar, G.J.Schmitz, A.Drevermann, M.Palm, F.Stein, N.Engberding, K.Kelm: Int. J. Mater. Res.101 (2010) 676–679. 10.3139/146.110321Search in Google Scholar
[6] F.Nový, M.Janeček, R.Král, B.Hadzima: Int. J. Mater. Res.103 (2012) 688–693. 10.3139/146.110679Search in Google Scholar
[7] J.M.Rakowski, C.P.Stinner, M.Lipschutz, J.P.Montague: ASME Turbo Expo 2014: Power for Land, Sea and Air (2004) 103–113. 10.1115/GT2004-53917Search in Google Scholar
[8] S.Goyal, K.Laha, C.R.Das, S. PanneerSelvi, M.D.Mathew: Mater. Sci. Eng. A563 (2013) 68–77. 10.1016/j.msea.2012.11.038Search in Google Scholar
[9] L.Bueno, J.Sobrinho: Matéria17 (2012) 1098–1108. 10.1590/S1517-70762012000300007Search in Google Scholar
[10] J.Jelwan, M.Chowdhury, G.Pearce: Eng. Fail. Anal.27 (2013) 350–372. 10.1016/j.engfailanal.2012.08.022Search in Google Scholar
[11] J.Purbolaksono, A.Khinani, A.Rashid, A.Ali, N.Nordin: Corros. Sci.51 (2009) 1022–1029. 10.1016/j.corsci.2009.02.025Search in Google Scholar
[12] D.N.Boccaccini, H.L.Frandsen, B.R.Sudireddy, P.Blennow, Å.H.Persson, K.Kwok, P. VangHendriksen: Int. J. Hydrogen Energy (2014). 10.1016/j.ijhydene.2014.07.138Search in Google Scholar
[13] J.-F.Wen, S.-T.Tu, X.-L.Gao, J.N.Reddy: Eng. Fract. Mech.98 (2013) 169–184. 10.1016/j.engfracmech.2012.12.014Search in Google Scholar
[14] Y.C.Lin, Y.-C.Xia, X.-S.Ma, Y.-Q.Jiang, M.-S.Chen: Mater. Sci. Eng. A550 (2012) 125–130. 10.1016/j.msea.2012.04.044Search in Google Scholar
[15] Y.C.Lin, Y.-C.Xia, M.-S.Chen, Y.-Q.Jiang, L.-T.Li: Comp. Mater. Sci.67 (2013) 243–248. 10.1016/j.commatsci.2012.09.007Search in Google Scholar
[16] Y.Kariya, M.Otsuka, W.Plumbridge: J. Electron. Mater.32 (2003) 1398–1402. 10.1007/s11664-003-0107-1Search in Google Scholar
[17] W.D.Day, A.P.Gordon: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, (2013) V07AT26A002. 10.1115/GT2013-94805Search in Google Scholar
[18] M.Evans: J. Mater. Sci.36 (2001) 2875–2884. 10.1179/026708301101510276Search in Google Scholar
[19] M.Law, W.Payten, K.Snowden: Int. J. Press. Vessels Pip.75 (1998) 437–442. 10.1016/S0308-0161(98)00038-6Search in Google Scholar
[20] A.K.Koul, R.Castillo: Mater. Sci. Eng. A138 (1991) 213–219. 10.1016/0921-5093(91)90690-OSearch in Google Scholar
[21] A.Loghman, M.A.Wahab: Int. J. Press. Vessels Pip.67 (1996) 105–111. 10.1016/0308-0161(94)00175-8Search in Google Scholar
[22] A.Loghman, A. AskariKashan, M. YounesiBidgoli, A.R.Shajari, A. GhorbanpourArani: J. Mech. Sci. Technol.27 (2013) 1041–1051. 10.1007/s12206-013-0213-9Search in Google Scholar
[23] S.Latha, M.D.Mathew, P.Parameswaran, K. Bhanu SankaraRao, S.L.Mannan: Mater. Sci. Eng. A527 (2010) 5167–5174. 10.1016/j.msea.2010.04.043Search in Google Scholar
[24] M.Evans: J. Mater. Sci.47 (2012) 2770–2781. 10.1007/s10853-011-6106-3Search in Google Scholar
[25] R.W.Evans, B.Wilshire: Creep of metals and alloys, Institute of Metals, London (1985).Search in Google Scholar
[26] K.Maruyama, H.Oikawa: J. Pressure Vessel Technol.109 (1987) 142–146. 10.1115/1.3264846Search in Google Scholar
[27] K.Maruyama, H.Oikawa: J. Japan Inst. Met. Mater.55 (1991) 1189–1193.10.2320/jinstmet1952.55.11_1189Search in Google Scholar
[28] B.Ule, T.Rodič, T.Šuštar: Mater. Sci. Technol.13 (1997) 555–559. 10.1179/mst.1997.13.7.555Search in Google Scholar
[29] H. OsmanAli, M.N.Tamin: J. Nucl. Mater.433 (2013) 74–79. 10.1016/j.jnucmat.2012.08.048Search in Google Scholar
[30] H.Osman, M.N.Tamin: Key. Eng. Mater.462–463, Trans. Tech. Publ. (2011) 906–911. 10.4028/www.scientific.net/KEM.462-463.906Search in Google Scholar
© 2016, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Microstructural evolution and creep of Fe–Al–Ta alloys
- Creep behaviour characterisation of a ferritic steel alloy based on the modified theta-projection data at an elevated temperature
- Facile fabrication, microstructure, and corrosion resistance of high-strength, high-hardness pure bulk aluminum
- A method for improving the mechanical properties of a hypereutectic Al–Si alloy by introducing the α-Al phase
- Experimental investigation by atomic force microscopy on mechanical and tribological properties of thin films
- Influence of ceramic B4C particulate addition on tensile behavior of 6061 aluminum matrix
- Role of cerium, lanthanum, and strontium additions in an Al – Si – Mg (A356) alloy
- Structural and mechanical study on Mg–xLM (x = 0–5 wt.%, LM = Sn, Ga) alloys
- Weibull distribution application on temperature dependence of polyurethane storage modulus
- Hierarchical bismuth phosphate microspheres with high photocatalytic performance
- Influence of calcination temperature on sol–gel synthesized single-phase bismuth titanate for high dielectric capacitor applications
- People
- Prof. Dr. Wolfgang Bleck on the occasion of his 65th birthday
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Microstructural evolution and creep of Fe–Al–Ta alloys
- Creep behaviour characterisation of a ferritic steel alloy based on the modified theta-projection data at an elevated temperature
- Facile fabrication, microstructure, and corrosion resistance of high-strength, high-hardness pure bulk aluminum
- A method for improving the mechanical properties of a hypereutectic Al–Si alloy by introducing the α-Al phase
- Experimental investigation by atomic force microscopy on mechanical and tribological properties of thin films
- Influence of ceramic B4C particulate addition on tensile behavior of 6061 aluminum matrix
- Role of cerium, lanthanum, and strontium additions in an Al – Si – Mg (A356) alloy
- Structural and mechanical study on Mg–xLM (x = 0–5 wt.%, LM = Sn, Ga) alloys
- Weibull distribution application on temperature dependence of polyurethane storage modulus
- Hierarchical bismuth phosphate microspheres with high photocatalytic performance
- Influence of calcination temperature on sol–gel synthesized single-phase bismuth titanate for high dielectric capacitor applications
- People
- Prof. Dr. Wolfgang Bleck on the occasion of his 65th birthday
- DGM News
- DGM News