Home Creep behaviour characterisation of a ferritic steel alloy based on the modified theta-projection data at an elevated temperature
Article
Licensed
Unlicensed Requires Authentication

Creep behaviour characterisation of a ferritic steel alloy based on the modified theta-projection data at an elevated temperature

  • Roozbeh Alipour and Ali Farokhi Nejad
Published/Copyright: April 30, 2016
Become an author with De Gruyter Brill

Abstract

This paper establishes and examines the constitutive model of the modified theta-projection concept for predicting the creep-rupture behaviour of a 2.25Cr-1Mo ferritic steel alloy foil at the loading conditions of practical interest. For this purpose, a series of creep-rupture tests are conducted on 0.15 mm thick foil specimens at an elevated temperature of 1 027 K and applied stresses in the range of 90 – 210 MPa. The creep-rupture behaviour of the foil is well represented using the model of the modified three-parameter theta-projection concept. Each model parameter is well represented as a function of the applied stress. Moreover, the creep failure mechanism was analysed by means of field emission scanning electron microscopy. The results showed that chromium atoms diffuse to the grain boundary and form carbide precipitates at the elevated temperature, leading to inter-granular fracture in the material.


*Correspondence address, Dr. Roozbeh Alipour, Department of Mechanical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Imam-Khomeini Blvd., Daneshgah Street, Mahshahr, Khuzestan, 6351977439, Islamic Republic of Iran. Tel.: +9861 52318180, E-mail:

References

[1] S.Zhu, M.Yang, X.L.Song, Z.Zhang, L.B.Wang, S.Tang, Z.D.Xiang: Mater. Sci. Eng. A619 (2014) 4756. 10.1016/j.msea.2014.09.059Search in Google Scholar

[2] Y.Wen, Y.Liu, D.Liu, B.Tang, C.Liu: Int. J. Mater. Res.102 (2011) 160167. 10.3139/146.110462Search in Google Scholar

[3] S.Goyal, K.Laha: Mater. Sci. Eng. A615 (2014) 348360. 10.1016/j.msea.2014.07.096Search in Google Scholar

[4] P.Seiler, M.Bäker, J.Rösler: Int. J. Mater. Res.103 (2012) 5056. 10.3139/146.110629Search in Google Scholar

[5] D.Sturm, M.Heilmaier, H.Saage, J.Aguilar, G.J.Schmitz, A.Drevermann, M.Palm, F.Stein, N.Engberding, K.Kelm: Int. J. Mater. Res.101 (2010) 676679. 10.3139/146.110321Search in Google Scholar

[6] F.Nový, M.Janeček, R.Král, B.Hadzima: Int. J. Mater. Res.103 (2012) 688693. 10.3139/146.110679Search in Google Scholar

[7] J.M.Rakowski, C.P.Stinner, M.Lipschutz, J.P.Montague: ASME Turbo Expo 2014: Power for Land, Sea and Air (2004) 103113. 10.1115/GT2004-53917Search in Google Scholar

[8] S.Goyal, K.Laha, C.R.Das, S. PanneerSelvi, M.D.Mathew: Mater. Sci. Eng. A563 (2013) 6877. 10.1016/j.msea.2012.11.038Search in Google Scholar

[9] L.Bueno, J.Sobrinho: Matéria17 (2012) 10981108. 10.1590/S1517-70762012000300007Search in Google Scholar

[10] J.Jelwan, M.Chowdhury, G.Pearce: Eng. Fail. Anal.27 (2013) 350372. 10.1016/j.engfailanal.2012.08.022Search in Google Scholar

[11] J.Purbolaksono, A.Khinani, A.Rashid, A.Ali, N.Nordin: Corros. Sci.51 (2009) 10221029. 10.1016/j.corsci.2009.02.025Search in Google Scholar

[12] D.N.Boccaccini, H.L.Frandsen, B.R.Sudireddy, P.Blennow, Å.H.Persson, K.Kwok, P. VangHendriksen: Int. J. Hydrogen Energy (2014). 10.1016/j.ijhydene.2014.07.138Search in Google Scholar

[13] J.-F.Wen, S.-T.Tu, X.-L.Gao, J.N.Reddy: Eng. Fract. Mech.98 (2013) 169184. 10.1016/j.engfracmech.2012.12.014Search in Google Scholar

[14] Y.C.Lin, Y.-C.Xia, X.-S.Ma, Y.-Q.Jiang, M.-S.Chen: Mater. Sci. Eng. A550 (2012) 125130. 10.1016/j.msea.2012.04.044Search in Google Scholar

[15] Y.C.Lin, Y.-C.Xia, M.-S.Chen, Y.-Q.Jiang, L.-T.Li: Comp. Mater. Sci.67 (2013) 243248. 10.1016/j.commatsci.2012.09.007Search in Google Scholar

[16] Y.Kariya, M.Otsuka, W.Plumbridge: J. Electron. Mater.32 (2003) 13981402. 10.1007/s11664-003-0107-1Search in Google Scholar

[17] W.D.Day, A.P.Gordon: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, (2013) V07AT26A002. 10.1115/GT2013-94805Search in Google Scholar

[18] M.Evans: J. Mater. Sci.36 (2001) 28752884. 10.1179/026708301101510276Search in Google Scholar

[19] M.Law, W.Payten, K.Snowden: Int. J. Press. Vessels Pip.75 (1998) 437442. 10.1016/S0308-0161(98)00038-6Search in Google Scholar

[20] A.K.Koul, R.Castillo: Mater. Sci. Eng. A138 (1991) 213219. 10.1016/0921-5093(91)90690-OSearch in Google Scholar

[21] A.Loghman, M.A.Wahab: Int. J. Press. Vessels Pip.67 (1996) 105111. 10.1016/0308-0161(94)00175-8Search in Google Scholar

[22] A.Loghman, A. AskariKashan, M. YounesiBidgoli, A.R.Shajari, A. GhorbanpourArani: J. Mech. Sci. Technol.27 (2013) 10411051. 10.1007/s12206-013-0213-9Search in Google Scholar

[23] S.Latha, M.D.Mathew, P.Parameswaran, K. Bhanu SankaraRao, S.L.Mannan: Mater. Sci. Eng. A527 (2010) 51675174. 10.1016/j.msea.2010.04.043Search in Google Scholar

[24] M.Evans: J. Mater. Sci.47 (2012) 27702781. 10.1007/s10853-011-6106-3Search in Google Scholar

[25] R.W.Evans, B.Wilshire: Creep of metals and alloys, Institute of Metals, London (1985).Search in Google Scholar

[26] K.Maruyama, H.Oikawa: J. Pressure Vessel Technol.109 (1987) 142146. 10.1115/1.3264846Search in Google Scholar

[27] K.Maruyama, H.Oikawa: J. Japan Inst. Met. Mater.55 (1991) 11891193.10.2320/jinstmet1952.55.11_1189Search in Google Scholar

[28] B.Ule, T.Rodič, T.Šuštar: Mater. Sci. Technol.13 (1997) 555559. 10.1179/mst.1997.13.7.555Search in Google Scholar

[29] H. OsmanAli, M.N.Tamin: J. Nucl. Mater.433 (2013) 7479. 10.1016/j.jnucmat.2012.08.048Search in Google Scholar

[30] H.Osman, M.N.Tamin: Key. Eng. Mater.462–463, Trans. Tech. Publ. (2011) 906911. 10.4028/www.scientific.net/KEM.462-463.906Search in Google Scholar

Received: 2015-11-12
Accepted: 2016-01-12
Published Online: 2016-04-30
Published in Print: 2016-05-13

© 2016, Carl Hanser Verlag, München

Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111362/html
Scroll to top button