Startseite Hierarchical bismuth phosphate microspheres with high photocatalytic performance
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Hierarchical bismuth phosphate microspheres with high photocatalytic performance

  • Lizhai Pei , Tian Wei , Nan Lin und Haiyun Yu
Veröffentlicht/Copyright: 30. April 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Hierarchical bismuth phosphate microspheres have been prepared by a simple hydrothermal process with polyvinyl pyrrolidone. Scanning electron microscopy observations show that the hierarchical bismuth phosphate microspheres consist of nanosheets with a thickness of about 30 nm. The diameter of the microspheres is about 1 – 3 μm. X-ray diffraction analysis shows that the microspheres are comprised of triclinic Bi23P4O44.5 phase. The formation of the hierarchical microspheres depends on polyvinyl pyrrolidone concentration, hydrothermal temperature and reaction time. Gentian violet acts as the pollutant model for investigating the photocatalytic activity of the hierarchical bismuth phosphate microspheres under ultraviolet–visible light irradiation. Irradiation time, dosage of the hierarchical microspheres and initial gentian violet concentration on the photocatalytic efficiency are also discussed. The hierarchical bismuth phosphate microspheres show good photocatalytic performance for gentian violet removal in aqueous solution.


*Correspondence address, Dr. Lizhai Pei, chool of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, P. R. China. Tel.: +86555 2311570, Fax: +86555 2311570, E-mail: ,

References

[1] G.Moussavi, M.Mahmoudi: Chem. Eng. J.152 (2009) 1. 10.1016/j.cej.2009.03.014Suche in Google Scholar

[2] J.Wu, H.Gao, S.Yao, L.Chen, Y.W.Gao, H.Zhang: Sep. Purif. Technol.147 (2015) 179. 10.1016/j.seppur.2015.04.022Suche in Google Scholar

[3] A.Mittal, J.Mittal, A.Malviya, D.Kaur, V.K.Gupta: J. Colloid Interf. Sci.343 (2010) 463. 10.1016/j.jcis.2009.11.060Suche in Google Scholar PubMed

[4] V.Sabna, S.G.Thampi, S.Chandrakaran: Ecotoxicol. Environ. Saf. (2016) in press. 10.1016/j.ecoenv.2015.09.018Suche in Google Scholar PubMed

[5] Y.Y.Pei, M.Wang, D.Tian, X.F.Xu, L.J.Yuan: J. Colloid Interf. Sci.453 (2015) 194. 10.1016/j.jcis.2015.05.003Suche in Google Scholar PubMed

[6] Y.P.Zhong, X.Wang, Y.He, Y.L.Ge, G.W.Song: IET Micro Nano Lett.10 (2015) 447. 10.1049/mnl.2015.0122Suche in Google Scholar

[7] F.A.Alshamsi, A.S.Albadwawi, M.M.Alnuaimi, M.A.Rauf, S.S.Ashraf: Dyes Pigm.74 (2007) 283. 10.1016/j.dyepig.2006.02.016Suche in Google Scholar

[8] I.Sirés, E.Guivarch, N.Oturanm, M.A.Oturan: Chemosphere72 (2008) 592. 10.1016/j.chemosphere.2008.03.010Suche in Google Scholar PubMed

[9] H.Wu, M.M.Fan, C.F.Li, M.Peng, L.J.Sheng, Q.Pan, G.W.Song: Water Sci. Technol.62 (2010) 1. 10.2166/wst.2010.170Suche in Google Scholar PubMed

[10] R.E.Palma-Goyes, F.L.Guzmán-Duque, G.Peñuela, I.González, J.L.Nava, R.A.Terres-Palma: Chemosphere81 (2010) 26. 10.1016/j.chemosphere.2010.07.020Suche in Google Scholar PubMed

[11] H.Zhang, J.Wu, Z.Q.Wang, D.B.Zhang: J. Chem. Technol. Biotechnol.85 (2010) 1436. 10.1002/jctb.2447Suche in Google Scholar

[12] S.H.Xu, W.F.Shangguan, J.Yuan, J.W.Shi, M.X.Chen: Mater. Sci. Eng. B137 (2007) 108. 10.1016/j.mseb.2006.10.019Suche in Google Scholar

[13] R.Dom, R.Subasri, K.Radha, P.H.Borse: Solid State Commun.151 (2011) 470. 10.1016/j.ssc.2010.12.034Suche in Google Scholar

[14] V.Chiono, I.Carmagnola, P.Gentile, F.Boccafoschi, C.Tonda-Turo, M.Ballarini, V.Georgieva, G.Georgiev, G.Ciardelli: Surf. Coat. Technol.206 (2012) 2446. 10.1016/j.surfcoat.2011.10.048Suche in Google Scholar

[15] A.M.Ferreira, I.Carmagnola, V.Chiono, P.Gentile, L.Fracchia, C.Ceresa, G.Georgiev, G.Ciardelli: Surf. Coat. Technol.223 (2013) 92. 10.1016/j.surfcoat.2013.02.035Suche in Google Scholar

[16] M.Saquib, M.Muneer: Dyes Pigm.56 (2003) 37. 10.1016/S0143-7208(02)00101-8Suche in Google Scholar

[17] X.H.Huang, J.Qiao, Q.F.Zhang: Asian J. Chem.26 (2014) 4303. 10.14233/ajchem.2014.16219Suche in Google Scholar

[18] N.Lin, L.Z.Pei, T.Wei, H.Y.Yu: Cryst. Res. Technol.50 (2015) 255. 10.1002/crat.201400461Suche in Google Scholar

[19] H.D.Liu, L.Z.Pei, N.Lin, S.Wang, H.Y.Yu: e-J. Surf. Sci. Nanotechnol.13 (2015) 8. 10.1380/ejssnt.2015.8Suche in Google Scholar

[20] T.S.Chang, G.J.Li, C.H.Shin, Y.K.Lee, S.S.Yun: Catal. Lett.68 (2000) 229. 10.1023/A:1019068411514Suche in Google Scholar

[21] M.Ruwet, S.Cecklewicz, B.Delmon: Ind. Eng. Chem. Res.26 (1987) 1981. 10.1021/ie00070a008Suche in Google Scholar

[22] Y.P.Bi, S.X.Ouyang, U.Naoto, J.Y.Cao, J.H.Ye: J. Am. Chem. Soc.133 (2011) 6490. 10.1021/ja2002132Suche in Google Scholar PubMed

[23] Y.Y.Zhu, Y.F.Liu, Y.H.Lv, H.Wang, Q.Ling, Y.F.Zhu: Acta Phys. Chim. Sin.29 (2013) 576. 10.3866/PKU.WHXB201301043Suche in Google Scholar

[24] Y.F.Liu, X.G.Ma, X.Yi, Y.F.Zhu: Acta Phys. Chim. Sin.28 (2012) 654. 10.3866/PKU.WHXB201112232Suche in Google Scholar

[25] L.Z.Pei, S.Wang, N.Lin, H.D.Liu, Y.H.Guo: RSC Adv.4 (2014) 48144. 10.1039/C4RA07324JSuche in Google Scholar

[26] M.K.Chine, F.Sediri, N.Gharbi: Mater. Res. Bull.47 (2012) 3422. 10.1016/j.materresbull.2012.07.016Suche in Google Scholar

[27] W.Cai, W.D.Xiang, J.J.Wang, X.M.Wang, J.S.Zhong, L.J.Liu: Mater. Lett.63 (2009) 2495. 10.1016/j.matlet.2009.08.050Suche in Google Scholar

[28] H.W.Che, A.F.Liu, X.L.Zhang, J.B.Mu, Y.M.Bai, J.X.Hou: Ceram. Int.41 (2015) 7556. 10.1016/j.ceramint.2015.02.079Suche in Google Scholar

[29] H.Li, Z.Jin, H.Y.Song, S.J.Liao: J. Mag. Mag. Mater.322 (2010) 30. 10.1016/j.jmmm.2009.08.028Suche in Google Scholar

[30] Y.F.Tang, L.Yang, S.H.Fang, Z.Qiu: Electrochim. Acta54 (2009) 6244. 10.1016/j.electacta.2009.05.092Suche in Google Scholar

[31] L.W.Lin, Y.H.Tang, C.S.Chen, H.F.Xu: Cryst. Eng. Comm.12 (2010) 2975. 10.1039/B927384KSuche in Google Scholar

[32] L.W.Lin, Y.H.Tang, C.S.Chen: Nanotechnology20 (2009) 175601. 10.1088/0957-4484/20/17/175601Suche in Google Scholar PubMed

[33] L.W.Lin, X.Y.Sun, Y.Jiang, Y.H.He: Nanoscale5 (2013) 12518. 10.1039/c3nr04185aSuche in Google Scholar PubMed

[34] L.Q.Xiang, X.P.Zhao, J.B.Yin, B.L.Fan: J. Mater. Sci.47 (2012) 1436. 10.1007/s10853-011-5924-7Suche in Google Scholar

[35] H.Q.Wang, G.H.Yang, L.S.Cui, Z.S.Li, Z.X.Yan, X.H.Zhang, Y.G.Huang, Q.Y.Li: J. Mater. Chem. A3 (2015) 21298. 10.1039/C5TA04882FSuche in Google Scholar

[36] X.Y.Zeng, L.X.Shi, L.J.Li, J.Yang, X.Cheng, M.Z.Gao: RSC Adv.5 (2015) 70379. 10.1039/C5RA11473JSuche in Google Scholar

[37] G.M.Zhang, Z.Y.Fu, Y.C.Wang, H.Wang, Z.Xie: RSC Adv.5 (2015) 83922. 10.1039/C5RA17679DSuche in Google Scholar

[38] J.Ameta, A.Kumar, R.Ameta, V.K.Sharma, S.C.Ameta: J. Iran. Chem. Soc.6 (2009) 293. 10.1007/BF03245837Suche in Google Scholar

[39] S.K.Kansal, N.Kaur, S.Singh: Nanoscale Res. Lett.4 (2009) 709. 10.1007/s11671-009-9300-3Suche in Google Scholar PubMed PubMed Central

Received: 2015-11-19
Accepted: 2016-02-04
Published Online: 2016-04-30
Published in Print: 2016-05-13

© 2016, Carl Hanser Verlag, München

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111364/html
Button zum nach oben scrollen