Influence of ceramic B4C particulate addition on tensile behavior of 6061 aluminum matrix
-
Sandeep Panyam Rajagopal
Abstract
In this study, an attempt was made to prepare 6061Al – B4Cp composites through a two-step melt stirring process at 750 °C. During the preparation of the composite, preheated K2TiF6 flux along with B4Cp (ratio 0.08) was added in the melt in two steps to avoid segregation of B4CP. Microstructural characterization was done using scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction techniques. Density, hardness and tensile strength of the cast alloy and the composite were determined both at room temperature and 100 °C. Fracture studies of the tensile specimens were also done using scanning electron microscopy.
References
[1] O.P.Modi, B.K.Prasad, A.H.Yegneswaran, M.L.Vaidya: Mater. Sci. Eng. A151 (1992) 235. 10.1016/0921-5093(92)90212-JSearch in Google Scholar
[2] J.Zhang, Z.Zhang, Y.W.Mai: Wear176 (1994) 231. 10.1016/S0043-1648(03)00121-2Search in Google Scholar
[3] M.K.Surappa, P.K.Rohatgi: J. Mater. Sci.16 (1981) 983. 10.1007/BF00542743Search in Google Scholar
[4] J.W.Kaczmar, K.Pietrzak, W.Wlosinski: J. Mater. Process. Technol.106 (2000) 58. 1016/S0924-0136(00)00639-7Search in Google Scholar
[5] K.K.Chawla: Composite Materials, Springer Science & Business Media, New York (2012). ISBN: 978-1-4757-2966-5. 10.1007/978-0-387-74365-3Search in Google Scholar
[6] M.Ajzenshtein, N.Froumin, E.Shapiro-Tsoref, M.P.Dariel, N.Frage: Scr. Mater.53 (2005) 1231. 10.1016/j.scriptamat.2005.08.006Search in Google Scholar
[7] J.Jung, S.Kang: J. Am. Ceram. Soc.87 (2004) 47. 10.1111/j.1551-2916.2004.00047.xSearch in Google Scholar
[8] K.B.Lee, H.S.Sim, S.H.Kim, K.H.Han, H.Kwon: J. Mater. Sci.36 (2001) 3179. 10.1007/s11661-001-0031-zSearch in Google Scholar
[9] D.C.Halverson, A.J.Pyzik, I.A.Aksay: US. Pat. No. 4605440 (1986). Serial no 06/730,528.Search in Google Scholar
[10] A.R.Kennedy, B.Brampton: Sci. Mater.44 (2001) 1077. 10.1016/S1359-6462(01)00658-3Search in Google Scholar
[11] D.C.Halverson, A.J.Pyzik, I.A.Aksay: J. Am. Ceram. Soc.72 (1989) 775. 10.1111/j.1151-2916.1989.tb06216.xSearch in Google Scholar
[12] J.J.Lewandowsky, C.Liu, W.H.Hunt: Mater. Sci. Eng. A107 (1989) 241. 10.1016/0921-5093(89)90392-4Search in Google Scholar
[13] K.B.Lee, H.S.Sim, S.Y.Cho, H.Kwon: Metall. Mater. Trans. A32 (2001) 2142. 10.1007/s11661-001-0031-zSearch in Google Scholar
[14] P.M.Singh, J.J.Lewandowsky: Metall. Mater. Trans. A24 (1993) 2531. 10.1007/BF02646532Search in Google Scholar
[15] Y.Flom, R.J.Arsenault: Acta Metall.37 (1989) 2413. 10.1016/0001-6160(89)90039-4Search in Google Scholar
[16] I.Kerti, F.Toptan: Mater. Lett.62 (2008) 1215. 10.1016/jmatlet.2007.08.015.Search in Google Scholar
[17] W.Zhou, Z.M.Xu: J. Mater. Process. Technol.63 (1997) 358. 10.1016/S09240136Search in Google Scholar
[18] ASTM E8 m: Standard test methods for tensile testing of metallic materials, ASTM International (2004). 10.1520/E0008-04Search in Google Scholar
[19] A.Baradeswaran, A. ElayaPerumal: Composites Part B54 (2013) 146. 10.1080/10402004.2014.947663Search in Google Scholar
[20] F.Toptan, A.Kilicarslan, A.Karaaslan, M.Cigdem, I.Kerti: Mater. Des.31 (2010) S87. 10.1016/j.matdes.2009.11.064Search in Google Scholar
[21] V.Auradi, G.L.Rajesh, S.A.Kori: Procedia Mater. Sci.6 (2014) 1068. 10.1016/j.mspro.2014.07.177Search in Google Scholar
[22] H.M.Hu, E.J.Lavernia, W.C.Harrigan, J.Kajuch, S.R.Nutt: Mater. Sci. Eng. A297 (2001) 94. 10.1016/S0921-5093(00)01254-5Search in Google Scholar
[23] K.B.Lee, H.S.Sim, S.Y.Cho, H.Kwon: Mater. Sci. Eng. A302 (2001) 227. 10.1016/S0921-5093(00)01831-1Search in Google Scholar
[24] J.P.Lucas, J.J.Stephens, F.A.Greulich: Mater. Sci. Eng. A131 (1991) 221. 10.1016/0921-5093(91)90398-7Search in Google Scholar
[25] J.Kellie, J.Wood: Mater. World3 (1995) 10. 10.1016/0026-0657(95)93612-2.Search in Google Scholar
[26] I.Topcu, H.O.Gulsoy, N.Kadioglu, A.N.Gulluoglu: J. Alloys Compd.482 (2009) 516. 10.1016/j.jallcom.2009.04.065Search in Google Scholar
[27] S.Y.Oh, J.A.Cornie, K.C.Russel: Metall. Trans. A20 (1989) 527. 10.1007/BF02653932Search in Google Scholar
[28] S.Y.Oh, J.A.Cornie, K.C.Russel: Metall. Trans. A20 (1989) 533. 10.1007/BF02653933Search in Google Scholar
[29] R.M.Mohanty, K.Balasubramaniam, S.K.Seshadri: Mater. Sci. Eng. A498 (2008) 42. 10.1016/j.msea.2007.11.154Search in Google Scholar
[30] V.A.Katkar, A.G. GunasekaranRao, P.M.Koli: Corros. Sci.53 (2011) 2700. 10.1016/J.corsci.2011.04.023Search in Google Scholar
[31] G.E.Dieter: Mechanical Metallurgy, McGraw-Hill, Berlin (1976).Search in Google Scholar
[32] V.Auradi, G.L.Rajesh, S.A.Kori: Mater. Manuf. Processes29 (2) (2014) 194. 10.1016/j.mspro.2014.7.269Search in Google Scholar
[33] S.Ho, E.J.Lavernia: Appl. Compos. Mater.2 (1995) 1. 10.1007/BF00567374Search in Google Scholar
[34] Griffith: The phenomena of ruptures and flows in solids, Philos. Trans. R. Soc., London (1920).Search in Google Scholar
[35] P.K.Ghosh, S.Ray: J. Mater. Sci.21 (1986) 1167. 10.1007/BF00353179Search in Google Scholar
[36] J.M.McCoy, C.Prones, F.E.Warner: Mater. Sci.1 (1988) 37.Search in Google Scholar
[37] S.Queyreau, G.Monnet, B.Devincre: Acta Mater.58 (2010) 5586. 10.1016/j.actamat.2010.06.028Search in Google Scholar
[38] B.G.Park, A.Crosk, A.K.Hellier: Composites Part B39 (2008) 1257. 10.1016/j.compositesb.2008.01.006Search in Google Scholar
[39] A.M.Maniatty, D.J.Littlewood, J.Lu: J. Eng. Mater. Technol.130 (2008) 021019. 10.1115/1.2884338Search in Google Scholar
© 2016, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Microstructural evolution and creep of Fe–Al–Ta alloys
- Creep behaviour characterisation of a ferritic steel alloy based on the modified theta-projection data at an elevated temperature
- Facile fabrication, microstructure, and corrosion resistance of high-strength, high-hardness pure bulk aluminum
- A method for improving the mechanical properties of a hypereutectic Al–Si alloy by introducing the α-Al phase
- Experimental investigation by atomic force microscopy on mechanical and tribological properties of thin films
- Influence of ceramic B4C particulate addition on tensile behavior of 6061 aluminum matrix
- Role of cerium, lanthanum, and strontium additions in an Al – Si – Mg (A356) alloy
- Structural and mechanical study on Mg–xLM (x = 0–5 wt.%, LM = Sn, Ga) alloys
- Weibull distribution application on temperature dependence of polyurethane storage modulus
- Hierarchical bismuth phosphate microspheres with high photocatalytic performance
- Influence of calcination temperature on sol–gel synthesized single-phase bismuth titanate for high dielectric capacitor applications
- People
- Prof. Dr. Wolfgang Bleck on the occasion of his 65th birthday
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Microstructural evolution and creep of Fe–Al–Ta alloys
- Creep behaviour characterisation of a ferritic steel alloy based on the modified theta-projection data at an elevated temperature
- Facile fabrication, microstructure, and corrosion resistance of high-strength, high-hardness pure bulk aluminum
- A method for improving the mechanical properties of a hypereutectic Al–Si alloy by introducing the α-Al phase
- Experimental investigation by atomic force microscopy on mechanical and tribological properties of thin films
- Influence of ceramic B4C particulate addition on tensile behavior of 6061 aluminum matrix
- Role of cerium, lanthanum, and strontium additions in an Al – Si – Mg (A356) alloy
- Structural and mechanical study on Mg–xLM (x = 0–5 wt.%, LM = Sn, Ga) alloys
- Weibull distribution application on temperature dependence of polyurethane storage modulus
- Hierarchical bismuth phosphate microspheres with high photocatalytic performance
- Influence of calcination temperature on sol–gel synthesized single-phase bismuth titanate for high dielectric capacitor applications
- People
- Prof. Dr. Wolfgang Bleck on the occasion of his 65th birthday
- DGM News
- DGM News