Structural and mechanical study on Mg–xLM (x = 0–5 wt.%, LM = Sn, Ga) alloys
-
Jiří Kubásek
Abstract
Low-melting point metals, such as Sn and Ga, can improve both the mechanical and corrosion properties of pure Mg. Currently, Mg–Sn based alloys are being considered for high-temperature applications, and both Mg–Sn and Mg–Ga based alloys are also being considered as possible candidates for biodegradable materials. Although these binary systems have already been the subject of research, only limited information on their characteristics has been published. Therefore, as-cast Mg–Sn and Mg–Ga alloys containing 1, 3.5 and 5 wt.% of alloying elements were studied in the present work. Moreover, the effect of extrusion on Mg–Sn and Mg–Ga alloys containing 3.5 wt.% of the alloying element was studied. Structural and chemical analyses of the alloys were performed by using light and scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. The mechanical properties were determined by Vickers hardness measurements and tensile and compressive testing. The as-cast alloys were characterized by a dendritic morphology with the presence of secondary eutectic phases. Both Sn and Ga exhibited hardening and strengthening effects on magnesium. The extruded alloys were characterized by fine-grained microstructures with a grain size of approximately 3 and 6 μm for Mg-3.5Sn and Mg-3.5Ga alloys, respectively, and significantly improved mechanical properties compared with the as-cast state. The ultimate tensile strength reached almost 250 MPa for both extruded alloys compared with 120–150 MPa for the as-cast condition. The results indicate that Mg–Sn- and Mg–Ga-based alloys appear to be suitable candidates for both engineering and medical applications.
References
[1] K.U.Kainer: Magnesium Alloys and Technologies, John Wiley & Sons (2006).Search in Google Scholar
[2] A.Luo, M.O.Pekguleryuz: J. Mater. Sci.29 (1994) 5259–5271. 10.1007/bf01171534Search in Google Scholar
[3] H.Liu, Y.Chen, Y.Tang, S.Wei, G.Niu: J. Alloys Compd.440 (2007) 122–126. 10.1016/j.jallcom.2006.09.024Search in Google Scholar
[4] W.F.Gale, T.C.Totemeier: Smithells Metals Reference Book (8th Edition), Butterworth-Heinemann, Oxford (2004). 10.1016/B978-075067509-3/50000-2Search in Google Scholar
[5] J.-M.Seitz, E.Wulf, P.Freytag, D.Bormann, F.-W.Bach: Adv. Eng. Mater.12 (2010) 1099–1105. 10.1002/adem.201000191Search in Google Scholar
[6] A.Krause, N.Höh, D.Bormann, C.Krause, F.-W.Bach, H.Windhagen, A.Meyer-Lindenberg: J. Mater. Sci.45 (2010) 624–632. 10.1007/s10853-009-3936-3Search in Google Scholar
[7] M.Thomann, C.Krause, D.Bormann, N.von der Höh, H.Windhagen, A.Meyer-Lindenberg: Materialwiss. Werkstofftechn.40 (2009) 82–87. 10.1002/mawe.200800412Search in Google Scholar
[8] F.Witte, N.Hort, C.Vogt, S.Cohen, K.U.Kainer, R.Willumeit, F.Feyerabend: Curr. Opin. Solid State Mater. Sci.12 (2008) 63–72. 10.1016/j.cossms.2009.04.001Search in Google Scholar
[9] T.Kraus, S.F.Fischerauer, A.C.Hänzi, P.J.Uggowitzer, J.F.Löffler, A.M.Weinberg: Acta Biomater.8 (2012) 1230–1238. 10.1016/j.actbio.2011.11.008Search in Google Scholar PubMed
[10] L.Rokhlin: Magnesium alloys containing rare earth metals, Taylor & Francis, London (2003).10.1201/9781482265163Search in Google Scholar
[11] F.Feyerabend, J.Fischer, J.Holtz, F.Witte, R.Willumeit, H.Drücker, C.Vogt, N.Hort: Acta Biomater.6 (2010) 1834–1842. 10.1016/j.actbio.2009.09.024Search in Google Scholar PubMed
[12] X.Zhang, G.Yuan, L.Mao, J.Niu, P.Fu, W.Ding: J. Mech. Behav. Biomed. Mater.7 (2012) 77–86. 10.1016/j.jmbbm.2011.05.026Search in Google Scholar
[13] F.Witte: Acta Biomater.6 (2010) 1680–1692. 10.1016/j.actbio.2010.02.028Search in Google Scholar
[14] M.B.Yang, F.S.Pan: Mater. Des.31 (2010) 68–75. 10.1016/j.matdes.2009.07.018Search in Google Scholar
[15] X.B.Liu, D.Y.Shan, Y.W.Song, R.S.Chen, E.H.Han: Electrochim. Acta56 (2011) 2582–2590. 10.1016/j.electacta.2010.12.030Search in Google Scholar
[16] X.Gu, Y.Zheng, Y.Cheng, S.Zhong, T.Xi: Biomaterials30 (2009) 484–498. 10.1016/j.biomaterials.2008.10.021Search in Google Scholar
[17] C.Zhao, F.Pan, S.Zhao, H.Pan, K.Song, A.Tang: Mater. Sci. Eng. C54 (2015) 245–251. 10.1016/j.msec.2015.05.042Search in Google Scholar
[18] C.Zhao, F.Pan, S.Zhao, H.Pan, K.Song, A.Tang: Mater. Des.70 (2015) 60–67. 10.1016/j.matdes.2014.12.041Search in Google Scholar
[19] Z.Zhen, T.Xi, Y.Zheng, L.Li, L.Li: J. Mater. Sci. Technol.30 (2014) 675–685. 10.1016/j.jmst.2014.04.005Search in Google Scholar
[20] J.Kubasek, D.Vojtech, J.Lipov, T.Ruml: Mater. Sci. Eng. C33 (2013) 2421–2432. 10.1016/j.msec.2013.02.005Search in Google Scholar
[21] Y.Feng, R.C.Wang, C.Q.Peng: Trans. Nonferrous Met. Soc. China21 (2011) 1047–1051. 10.1016/S1003-6326(11)60820-0Search in Google Scholar
[22] H.B.Liu, G.H.Qi, Y.T.Ma, H.Hao, F.Jia, S.H.Ji, H.Y.Zhang, X.G.Zhang: Mater. Sci. Eng. A526 (2009) 7–10. 10.1016/j.msea.2009.07.073Search in Google Scholar
[23] J.Zhao, K.Yu, Y.Hu, S.Li, X.Tan, F.Chen, Z.Yu: Electrochim. Acta56 (2011) 8224–8231. 10.1016/j.electacta.2011.06.065Search in Google Scholar
[24] Y.Feng, R.C.Wang, K.Yu, C.Q.Peng, W.X.Li: Trans. Nonferrous Met. Soc. China17 (2007) 1363–1366. 10.1016/S1003-6326(07)60278-7Search in Google Scholar
[25] S.A.Jewett, M.S.Makowski, B.Andrews, M.J.Manfra, A.Ivanisevic: Acta Biomater.8 (2012) 728–733. 10.1016/j.actbio.2011.09.038Search in Google Scholar
[26] P.Melnikov, A.R.Teixeira, A.Malzac, M.D.Coelho: Mater. Chem. Phys.117 (2009) 86–90. 10.1016/j.matchemphys.2009.05.046Search in Google Scholar
[27] C.E.Linsmeier, L.Wallman, L.Faxius, J.Schouenborg, L.M.Bjursten, N.Danielsen: Biomaterials29 (2008) 4598–4604. 10.1016/j.biomaterials.2008.08.028Search in Google Scholar
[28] D.Chen, Y.-P.Ren, Y.Guo, W.-L.Pei, H.-D.Zhao, G.-W.Qin: Trans. Nonferrous Met. Soc. China20 (2010) 1321–1325. 10.1016/S1003-6326(09)60298-3Search in Google Scholar
[29] H.Liu, G.Qi, Y.Ma, H.Hao, F.Jia, S.Ji, H.Zhang, X.Zhang: Mater. Sci. Eng. A526 (2009) 7–10. 10.1016/j.msea.2009.07.073Search in Google Scholar
[30] J.Bohlen, S.B.Yi, J.Swiostek, D.Letzig, H.G.Brokmeier, K.U.Kainer: Scr. Mater.53 (2005) 259–264. 10.1016/j.scriptamat.2005.03.036Search in Google Scholar
[31] N.Stanford, M.R.Barnett: Mater. Sci. Eng. A496 (2008) 399–408. 10.1016/j.msea.2008.05.045Search in Google Scholar
[32] M.Shahzad, L.Wagner: Mater. Sci. Eng. A506 (2009) 141–147. 10.1016/j.msea.2008.11.038Search in Google Scholar
[33] R.Cottam, J.Robson, G.Lorimer, B.Davis: Mater. Sci. Eng. A485 (2008) 375–382. 10.1016/j.msea.2007.08.016Search in Google Scholar
[34] O.Sitdikov, R.Kaibyshev: Mater. Trans., JIM42 (2001) 1928–1937. 10.2320/matertrans.42.1928Search in Google Scholar
[35] C.Bettles, M.Barnett: Advances in Wrought Magnesium Alloys, Woodhead Publishing LTD, Cambridge (2012). 10.1533/9780857093844Search in Google Scholar
[36] M.R.Barnett, A.G.Beer, in: P.B.Prangnell, P.S.Bate (Eds.), Fundamentals of Deformation and Annealing, Trans Tech Publications Inc., Stafa-Zurich (2007) 369–374.Search in Google Scholar
[37] S.W.Xu, M.Y.Zheng, S.Kamado, K.Wu, G.J.Wang, X.Y.Lv: Mater. Sci. Eng. A528 (2011) 4055–4067. 10.1016/j.msea.2011.01.103Search in Google Scholar
[38] H.Haferkamp, R.Boehm, U.Holzkamp, C.Jaschik, V.Kaese, M.Niemeyer: Mater. Trans., JIM42 (2001) 1160–1166. 10.2320/matertrans.42.1160Search in Google Scholar
[39] S.R.Agnew, M.H.Yoo, C.N.Tomé: Acta Mater.49 (2001) 4277–4289. 10.1016/S1359-6454(01)00297-XSearch in Google Scholar
[40] H.Liu, G.Qi, Y.Ma, H.Hao, F.Jia, S.Ji, H.Zhang, X.Zhang: Mater. Sci. Eng. A526 (2009) 7–10. 10.1016/j.msea.2009.07.073Search in Google Scholar
© 2016, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Microstructural evolution and creep of Fe–Al–Ta alloys
- Creep behaviour characterisation of a ferritic steel alloy based on the modified theta-projection data at an elevated temperature
- Facile fabrication, microstructure, and corrosion resistance of high-strength, high-hardness pure bulk aluminum
- A method for improving the mechanical properties of a hypereutectic Al–Si alloy by introducing the α-Al phase
- Experimental investigation by atomic force microscopy on mechanical and tribological properties of thin films
- Influence of ceramic B4C particulate addition on tensile behavior of 6061 aluminum matrix
- Role of cerium, lanthanum, and strontium additions in an Al – Si – Mg (A356) alloy
- Structural and mechanical study on Mg–xLM (x = 0–5 wt.%, LM = Sn, Ga) alloys
- Weibull distribution application on temperature dependence of polyurethane storage modulus
- Hierarchical bismuth phosphate microspheres with high photocatalytic performance
- Influence of calcination temperature on sol–gel synthesized single-phase bismuth titanate for high dielectric capacitor applications
- People
- Prof. Dr. Wolfgang Bleck on the occasion of his 65th birthday
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Microstructural evolution and creep of Fe–Al–Ta alloys
- Creep behaviour characterisation of a ferritic steel alloy based on the modified theta-projection data at an elevated temperature
- Facile fabrication, microstructure, and corrosion resistance of high-strength, high-hardness pure bulk aluminum
- A method for improving the mechanical properties of a hypereutectic Al–Si alloy by introducing the α-Al phase
- Experimental investigation by atomic force microscopy on mechanical and tribological properties of thin films
- Influence of ceramic B4C particulate addition on tensile behavior of 6061 aluminum matrix
- Role of cerium, lanthanum, and strontium additions in an Al – Si – Mg (A356) alloy
- Structural and mechanical study on Mg–xLM (x = 0–5 wt.%, LM = Sn, Ga) alloys
- Weibull distribution application on temperature dependence of polyurethane storage modulus
- Hierarchical bismuth phosphate microspheres with high photocatalytic performance
- Influence of calcination temperature on sol–gel synthesized single-phase bismuth titanate for high dielectric capacitor applications
- People
- Prof. Dr. Wolfgang Bleck on the occasion of his 65th birthday
- DGM News
- DGM News