Startseite An experimental investigation into the effects of Cr2O3 and ZnO2 nanoparticles on the mechanical properties and durability of self-compacting mortar
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An experimental investigation into the effects of Cr2O3 and ZnO2 nanoparticles on the mechanical properties and durability of self-compacting mortar

Dieser Artikel wurde zurückgezogen. Rücknahme-Notiz.
  • Jian Yang , Ehsan Mohseni , Babak Behforouz und Mojdeh Mehrinejad Khotbehsara
Veröffentlicht/Copyright: 7. August 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, the effects of using Cr2O3 and ZnO2 nanoparticles on the mechanical properties and durability of self-compacting mortars are investigated. A fraction of Portland cement was replaced with 1, 2, 3, 4 or 5 wt.% of either Cr2O3 or ZnO2 nanoparticles, and 25 wt.% fly ash. The rheological properties of these mortars were determined through the mini-slump flow diameter and V-funnel flow time tests. The mechanical and durability characteristics were evaluated by compressive and flexural strength, water absorption, electrical resistivity and rapid chloride permeability tests. The microstructure of the mortars was assessed through the use of scanning electron microscopy. The inclusion of 2 wt.% Cr2O3 or 4 wt.% ZnO2 nanoparticles had the best result in compressive and flexural strength tests. Also, mixtures containing either 3 wt.% of Cr2O3 or 5 wt.% of ZnO2 nanoparticles obtained the best result in terms of durability. It can be deduced that the properties of these mixtures are significantly improved by the addition of Cr2O3 and ZnO2 nanoparticles.


* Correspondence address, Ehsan Mohseni, Department of Civil Engineering, University of Guilan, Rasht, P.O. Box 3756, Iran, Tel.: +989125590423, Fax: +981316690271, E-mail:

References

[1] F. Sanchez , K.Sobolev: Constr. Build. Mater.24 (2010) 2060. 10.1016/j.conbuildmat.2010.03.014Suche in Google Scholar

[2] Q. Ye , Z.Zenan, K.Deyu, C.Rongshen: Constr. Build. Mater.21 (2007) 539. 10.1016/j.conbuildmat.2005.09.001Suche in Google Scholar

[3] T. Ji : Cem. Concr. Res.35 (2005) 1943. 10.1016/j.cemconres.2005.07.004Suche in Google Scholar

[4] G. Li : Cem. Concr. Res.34 (2004) 1043. 10.1016/S0008-8846(03)00128-5Suche in Google Scholar

[5] B.W. Jo , C.H.Kim, G.H.Tae, J.B.Park: Constr. Build. Mater.21 (2007) 1351. 10.1016/j.conbuildmat.2005.12.020Suche in Google Scholar

[6] K. Lin , W.Chang, D.Lin, H.Luo, M.Tsai: J. Environ. Manage.88 (2008) 708. 10.1016/j.jenvman.2007.03.036Suche in Google Scholar PubMed

[7] A. Nazari , S.Riahi, S.Riahi, S.Shamekhi, A.Khademno: J. Am. Sci.6 (2010) 98.Suche in Google Scholar

[8] H. Li , M.H.Zhang, J.P.Ou: Wear260 (2006) 1262. 10.1016/j.wear.2005.07.002Suche in Google Scholar

[9] A. Shekari , M.Razzaghi: Procedia Eng.14 (2011) 3036. 10.1016/j.proeng.2011.07.382Suche in Google Scholar

[10] A.N. Givi , S.A.Rashid, F.N.A.Aziz, M.A.M.Salleh: J. Exp. Nanosci.8 (2013) 1. 10.1080/17458080.2010.548834Suche in Google Scholar

[11] J. Björnström , A.Martinelli, A.Matic, L.Börjesson, I.Panas: Chem. Phys. Lett.392 (2004) 242. 10.1016/j.cplett.2004.05.071Suche in Google Scholar

[12] H. Li , H.G.Xiao, J.Yuan, J.Ou: Composites Part B35 (2004) 185. 10.1016/S1359-8368(03)00052-0Suche in Google Scholar

[13] A. Nazari , S.Riahi: Mater. Sci. Eng., A528 (2011) 1173. 10.1016/j.msea.2010.09.098Suche in Google Scholar

[14] A. Nazari , S.Riahi: Mater. Res.14 (2011) 178. 10.1590/S1516-14392011005000030Suche in Google Scholar

[15] A. Nazari , S.Riahi: J. Exp. Nanosci.7 (2012) 491. 10.1080/17458080.2010.524669Suche in Google Scholar

[16] P. Hou , S.Kawashima, K.Wang, D.Corr, J.Qian, S.Shah: Cem. Concr. Compos.35 (2013) 12. 10.1016/j.cemconcomp.2012.08.027Suche in Google Scholar

[17] P. Hou , K.Wang, J.Qian, S.Kawashima, D.Kong, S.Shah: Cem. Concr. Compos.34 (2012) 1095. 10.1016/j.cemconcomp.2011.10.003Suche in Google Scholar

[18] M. Şahmaran , H.A.Christianto, I.O.Yaman: Cem. Concr. Compos.28 (2006) 432. 10.1016/j.cemconcomp.2005.12.003Suche in Google Scholar

[19] ASTM C150: Standard specification for Portland cement. Annual Book of ASTM Standards. Philadelphia: PA (2001).Suche in Google Scholar

[20] ASTM C494 TYPE F: Standard Specification for Chemical Admixtures for Concrete. Annual Book of ASTM Standards. Philadelphia: PA (2001).Suche in Google Scholar

[21] EFNARC: Specification and guidelines for self-compacting concrete. Feb. (2002) 29–35.Suche in Google Scholar

[22] A. Nazari , S.Riahi: Composites Part B42 (2011) 167. 10.1016/j.compositesb.2010.09.001Suche in Google Scholar

[23] ASTM C642-13: Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, Annual Book of ASTM Standards, PA (2006).Suche in Google Scholar

[24] M. Jalal , E.Mansouri, M.Sharifipour, A.R.Pouladkhan: Mater. Des.34 (2012) 38. 10.1016/j.matdes.2011.08.037Suche in Google Scholar

[25] T. Wee , A.K.Suryavanshi, S.Tin: ACI Mater. J.97 (2000) 221.Suche in Google Scholar

[26] A.S. El-Dieb : Mater. Des.30 (2009) 4286. 10.1016/j.matdes.2009.04.024Suche in Google Scholar

[27] ASTM C 1202: Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, Annual book of ASTM Standards, Philadelphia, PA (2003).Suche in Google Scholar

[28] ACI Committee 222: Protection of metals in concrete against corrosion, ACI 222R-01. (2001).Suche in Google Scholar

[29] A. Nazari , S.Riahi: Energy Build.43 (2011) 864. 10.1016/j.enbuild.2010.12.006Suche in Google Scholar

Received: 2014-11-26
Accepted: 2015-03-10
Published Online: 2015-08-07
Published in Print: 2015-08-11

© 2015, Carl Hanser Verlag, München

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111245/html
Button zum nach oben scrollen